Diego Galar
Podejmowanie decyzji eksploatacyjnych w oparciu o fuzję różnego typu danych
W ostatniej dekadzie coraz częściej stosuje się integrację systemów, która pozwala przedsiębiorstwom zwiększać wydajność procesów biznesowych. Nowością w zarządzaniu infrastrukturą techniczną jest zwiększanie efektywności już poczynionych inwestycji w systemy kontroli procesów. Pozwala to zespołom do spraw operacyjnych, utrzymania ruchu oraz kontroli procesów monitorować i ustalać nowe poziomy alarmowe na podstawie danych o stanie fizycznym maszyn krytycznych. Utrzymanie urządzeń zależne od ich bieżącego stanu technicznego (condition-based maintenance, CBM) to filozofia utrzymania ruchu opierająca się na tym masowym poborze danych, wedle której decyzje dotyczące naprawy lub wymiany sprzętu zależą od jego obecnego oraz przewidywanego przyszłego stanu technicznego. Ponieważ dotychczasowe badania były zdominowane przez problem technik monitorowania stanu dla konkretnych aplikacji, nie opracowano ogólnej metody wdrażania CBM opartej na eksploracji (data mining ) owych olbrzymich ilości zebranych danych, która miałaby zastosowanie w różnych domenach. Konieczna jest integracja danych z monitorowania stanu (condition monitoring, CM) z danymi dotyczącymi zarządzania pochodzącymi ze skomputeryzowanych systemów zarządzania utrzymaniem ruchu (CMMS), które zawierają informacje na temat uszkodzeń elementów składowych, dane związane z uszkodzeniami, a także informacje dotyczące obsługi lub napraw czy sterowania zapasami. Systemy te stanowią podstawę tradycyjnych praktyk obsługi planowej, a zasadzają się na całościowych obserwacjach dokonywanych na podstawie danych eksploatacyjnych, które pozwalają modyfikować regulowane działania obsługowe. Najbardziej oczywistą przeszkodą w integracji danych CMMS, danych procesowych oraz danych z monitorowania stanu jest rozbieżność ich natury. Dotychczas podjęto jedynie kilka prób rozwiązania tego problemu. Chociaż ostatnio wiele wysiłku włożono w gromadzenie i utrzymanie dużych zasobów tego typu danych, istnieje stosunkowo niewiele badań na temat możliwych sposobów powiązania owych zestawów danych. W prezentowanej pracy poczyniono próbę wypełnienia tej luki proponując metodologię łączoną opartą na eksploracji danych dla celów CBM, która bierze pod uwagę dane z monitorowania stanu i eksploatacyjne dane z zarządzania ruchem. W pracy przedstawiono integrację systemową danych fizycznych i danych z zarządzania, która wspiera także analitykę biznesową (business intelligence) oraz eksplorację danych, gdzie zestawy danych można łączyć w sposób nietradycyjny.
Maintenance Decision Making based on different types of data fusion
Over the last decade, system integration is applied more as it allows organizations to streamline business processes. A recent development in the asset engineering management is to leverage the investment already made in process control systems. This allows the operations, maintenance, and process control teams to monitor and determine new alarm level based on the physical condition data of the critical machines. Condition-based maintenance (CBM) is a maintenance philosophy based on this massive data collection, wherein equipment repair or replacement decisions depend on the current and projected future health of the equipment. Since, past research has been dominated by condition monitoring techniques for specific applications; the maintenance community lacks a generic CBM implementation method based on data mining of such vast amount of collected data. The methodology would be relevant across different domains. It is necessary to integrate Condition Monitoring (CM) data with management data from CMMS (Computer Maintenance Management Systems) which contains information, such as: component failures, failure information related data, servicing or repairs, and inventory control and so on. These systems are the core of traditional scheduled maintenance practices and rely on bulk observations from historical data to make modifications to regulated maintenance actions. The most obvious obstacle in the integration of CMMS, process and CM data is the disparate nature of the data types involved, and there have benn several attempts to remedy this problem. Although, there have been many recent efforts to collect and maintain large repositories of these types of data, there have been relatively few studies to identify the ways these to datasets could be related. This paper attempts to fulfill that need by proposing a combined data mining-based methodology for CBM considering CM data and Historical Maintenance Management data. It shows a system integration of physical and management data that also supports business intelligence and data mining where data sets can be combined in non-traditional ways.
Potrzeba zagregowanych wskaźników wydajności w zarządzaniu aktywami
Wskaźniki złożone tworzy się poprzez zebranie pojedynczych wskaźników w jeden indeks. Idealnie, wskaźnik złożony powinien mierzyć pojęcia wielowymiarowe, których nie da się uchwycić przy pomocy pojedynczego indeksu. Ponieważzarządzanie aktywami jest dziedziną wielodyscyplinarną, przydatne byłoby wykorzystanie w niejwskaźników złożonych. W przedstawionej pracyopisano metodęmonitorowania złożonej jednostki w zakładzie przetwórczym. W podanym scenariuszu, złożony wskaźnik wykorzystania powstał z połączenia wskaźników wykorzystania niższego rzędu z wartościami ważonymi. Każdy wskaźnik wykorzystania zawiera informacje na temat statusu jednego aspektu jednostek niższego rzędu, a każda wartość ważona odpowiada jednej jednostce niższego rzędu.
The need for aggregated indicators in performance asset management
Composite indicators formed when individual Indicators are compiled into a single index. A composite indicator should ideally measure multidimensional concepts that cannot be captured by a single index. Since asset management is multidisciplinary, composite indicators would be helpful. This paper describes a method of monitoring a complex entity in a processing plant. In this scenario, a composite use index from a combination of lower level use indices and weighting values. Each use index contains status information on one aspect of the lower level entities, and each weighting value corresponds to one lower level entity. The resulting composite indicator can be a decision-making tool for asset managers.
Metodologia opartego na fizyce modelowania wielorakich konfiguracji łożysk tocznych
Utrzymanie ruchu zależne od stanu technicznego urządzenia to rozszerzone podejście do eksploatacji mające zastosowanie do wielu układów, w tym łożysk tocznych. Ciekawą metodą modelowania tych elementów jest modelowanie oparte na fizyce. Łożyska toczne wykorzystywane są szeroko w wielu dziedzinach, co oznacza, że elementy toczne mogą występować w wielorakich konfiguracjach różniących się rodzajem elementów tocznych, ich wewnętrznym układem oraz liczbą rzędów. Co więcej, różnice dotyczące zastosowań sprawiają, że łożyska toczne mogą przybierać różne rozmiary i działać w różnych warunkach prędkości i obciążeń. W niniejszej pracy zaprezentowano metodologię tworzenia modelu matematycznego opartego na fizyce służącego do odtwarzania dynamiki wielu rodzajów łożysk tocznych. Zgodnie z zasadami modelowania układów wieloczłonowych, proponowana strategia wykorzystuje możliwość ponownego użycia modeli do zamodelowania szerokiego zakresu konfiguracji łożysk, a także uogólnienia wymiarowania łożyska oraz ujęcia warunków jego pracy. W opracowaniu przedstawiono symulacje dwóch konfiguracji elementów tocznych wraz z analizą ich dynamicznej odpowiedzi oraz analizą skutków uszkodzenia ich części. Wyniki dwóch przedstawionych w pracy studiów przypadków wykazują dobrą zgodność z danymi doświadczalnymi oraz wynikami innych modeli opisanymi w literaturze.
Multi-body modelling of rolling element bearings and performance evaluation with localised damage
Condition-based maintenance is an extended maintenance approach for many systems, including rolling element bearings. For that purpose, the physics-based modelling of these machine elements is an interesting method. The use of rolling element bearings is extended to many fields, what implies a variety of the configurations that they can take regarding the kind of rolling elements, the internal configuration and the number of rows. Moreover, the differences of the applications make rolling element bearings to take different sizes and to be operating at different conditions regarding both speed and loads. In this work, a methodology to create a physics-based mathematical model to reproduce the dynamics of multiple kinds of rolling element bearings is presented. Following a multi-body modelling, the proposed strategy takes advantage of the reusability of models to cover a wide range of bearing configurations, as well as to generalise the dimensioning of the bearing and the application of the operating conditions. Simulations of two bearing configurations are presented in this paper, analysing their dynamic response as well as analysing the effects of damage in their parts. Results of the two case studies show good agreement with experimental data and results of other models in literature.
Wykorzystanie drzew decyzyjnych oraz wpływu parametrów ekstrakcji cech do projektowania odpornych sieci czujników
Niezawodne monitorowanie stanu wymaga niezawodności czujników i pochodzących z nich informacji. Systemy złożone są zazwyczaj monitorowane przez wiele czujników, co pozwala na ocenę stanu technicznego oraz aspektów eksploatacyjnych. Gdy jeden z czujników ulega uszkodzeniu, uniemożliwia to obliczenie bieżącego stanu systemu z dotychczasową niezawodnością lub uzyskanie kompletnych informacji o bieżącym stanie. Stan można co prawda monitorować nawet przy niekompletnych danych, ale wyniki takiego monitorowania mogą nie odpowiadać rzeczywistemu stanowi systemu. Sytuacja taka ma miejsce w szczególności, gdy uszkodzony czujnik jest odpowiedzialny za monitorowanie istotnego parametru systemu. Problem uszkodzenia czujnika można rozwiązywać na dwa sposoby. Pierwszy polega na zwiększeniu złożoności systemu, co umożliwia jego sprawniejsze działanie w sytuacji, gdy dane są niekompletne. Drugim sposobem jest wprowadzenie nadmiarowego sprzętu (hardware'u) lub oprogramowania. Niezawodność czujników stanowi krytyczny aspekt systemu. Oczywiście, ze względu na ograniczenia przestrzenne, ekonomiczne i środowiskowe nie wszystkie czujniki w systemie mogą być nadmiarowe. Redundancja powinna dotyczyć wszystkich czujników, które dostarczają istotnych informacji na temat stanu systemu, natomiast dopuszczalne są błędy mniej ważnych czujników. W niniejszej pracy pokazano jak obliczać istotność informacji o systemie dostarczanych przez poszczególne czujniki z wykorzystaniem metod przetwarzania sygnałów oraz drzew decyzyjnych. Zademonstrowano również w jaki sposób parametry przetwarzania sygnałów wpływają na poprawność klasyfikacji metodą drzewa decyzyjnego, a tym samym na poprawność dostarczanych informacji. Drzew decyzyjnych używa się do obliczania i porządkowania cech w oparciu o przyrost informacji charakteryzujący poszczególne cechy. Podczas weryfikacji zastosowanej metody, drzewa decyzyjne wykorzystano do klasyfikacji uszkodzeń celem przedstawienia wpływu różnych cech na dokładność klasyfikacji. Pracę kończy analiza wyników eksperymentów pokazujących w jaki sposób zastosowana metoda pozwala na klasyfikację różnych błędów z 75-procentowym prawdopodobieństwem oraz jak różne opcje ekstrakcji cech wpływają na przyrost informacji.
Decision trees and the effects of feature extraction parameters for robust sensor network design
Reliable sensors and information are required for reliable condition monitoring. Complex systems are commonly monitored by many sensors for health assessment and operation purposes. When one of the sensors fails, the current state of the system cannot be calculated in same reliable way or the information about the current state will not be complete. Condition monitoring can still be used with an incomplete state, but the results may not represent the true condition of the system. This is especially true if the failed sensor monitors an important system parameter. There are two possibilities to handle sensor failure. One is to make the monitoring more complex by enabling it to work better with incomplete data; the other is to introduce hard or software redundancy. Sensor reliability is a critical part of a system. Not all sensors can be made redundant because of space, cost or environmental constraints. Sensors delivering significant information about the system state need to be redundant, but an error of less important sensors is acceptable. This paper shows how to calculate the significance of the information that a sensor gives about a system by using signal processing and decision trees. It also shows how signal processing parameters influence the classification rate of a decision tree and, thus, the information. Decision trees are used to calculate and order the features based on the information gain of each feature. During the method validation, they are used for failure classification to show the influence of different features on the classification performance. The paper concludes by analysing the results of experiments showing how the method can classify different errors with a 75% probability and how different feature extraction options influence the information gain.
Zintegrowany ekonometryczny model do modelowania wymiany taboru autobusowego oraz określania wielkości floty rezerwowej w oparciu o konserwację predykcyjną
Polityka konserwacji wpływa na gotowość sprzętu, a tym samym na wydajność i konkurencyjność przedsiębiorstwa. Ważne jest optymalizowanie kosztów cyklu życia (LCC) aktywów, w tym przypadku taboru autobusowego. W artykule przedstawiono metodę utrzymania ruchu polegającą na predykcyjnym monitorowaniu stanu w oparciu o analizę oleju silnikowego w celu oceny potencjalnego wpływu tej zmiennej na gotowość autobusów. Podejście to ma praktyczne konsekwencje jeśli chodzi o koszty utrzymania w trakcie eksploatacji autobusu, a także pozwala na ustalenie najlepszego czasu na wymianę pojazdów taboru. W pracy przedstawiono przegląd ekonomicznych modeli wymiany oraz opracowano model globalny integrujący te modele, ze szczególnym uwzględnieniem gotowości oraz jej zależności od konserwacji oraz kosztów utrzymania ruchu. Czynniki te pomagają określić wielkość floty rezerwowej i zapewnić gotowość taboru.
An integrated econometric model for bus replacement and determination of reserve fleet size based on predictive maintenance
Maintenance policies influence equipment availability and, thus, they affect a company’s capacity for productivity and competitiveness. It is important to optimize the Life Cycle Cost (LCC) of assets, in this case, passenger bus fleets. The paper presents a predictive condition monitoring maintenance approach based on engine oil analysis, to assess the potential impact of this variable on the availability of buses. The approach has implications on maintenance costs during the life of a bus and, consequently, on the determination of the best time for bus replacement. The paper provides an overview of economic replacement models through a global model, with an emphasis on availability and its dependence on maintenance and maintenance costs. These factors help to determine the size of the reserve fleet and guarantee availability.