THIS IS AN ARCHIVED VERSION OF OUR WEBSITE.

THE CURRENT VERSION OF OUR WEBSITE CAN BE FOUND:
http://ein.org.pl


ISSN 1507-2711
ISSN online 2956-3860

JOURNAL DOI: dx.doi.org/10.17531/ein

JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies


 We verify submissions originality with the use of iThenticate plagiarism checker


 All accepted articles are published Open Access under the Creative Commons Licence: CC-BY 4.0

Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line


The average number of weeks from article submission to the final decision: 4 weeks




http://scientific.thomsonreuters.com/cgi-bin/jrnlst/jloptions.cgi?PC=D

http://www.thomsonreuters.com/products_services/scientific/Journal_Citation_Reports

http://doaj.org

http://infobaseindex.com

http://www.info.scopus.com/why-scopus/publishers/?url=detail/what/publishers/

http://www.ebsco.com


MOST CITED

Update: 2021-07-01

1. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 59
2. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 14, Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 53
3. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 14, Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 51
4. INNOVATIVE METHODS OF NEURAL RECONSTRUCTION FOR TOMOGRAPHIC IMAGES IN MAINTENANCE OF TANK INDUSTRIAL REACTORS
By: Rymarczyk, Tomasz; Klosowski, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 21 Issue: 2 Pages: 261-267 Published: 2019

Times Cited: 50
5. APPLICATION OF NEURAL RECONSTRUCTION OF TOMOGRAPHIC IMAGES IN THE PROBLEM OF RELIABILITY OF FLOOD PROTECTION FACILITIES
By: Rymarczyk, Tomasz; Klosowski, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 20 Issue: 3 Pages: 425-434 Published: 2018

Times Cited: 45
6. ASSESSMENT MODEL OF CUTTING TOOL CONDITION FOR REAL-TIME SUPERVISION SYSTEM
By: Kozlowski, Edward; Mazurkiewicz, Dariusz; Zabinski, Tomasz; Prucnal, Slawomir; Sep, Jaroslaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 21 Issue: 4 Pages: 679-685 Published: 2019

Times Cited: 40
7. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 39
8. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Volume 14, Issue: 2   Pages: 135-144   Published:2012

Times Cited: 38
9. TESTS OF EXTENDABILITY AND STRENGTH OF ADHESIVE-SEALED JOINTS IN THE CONTEXT OF DEVELOPING A COMPUTER SYSTEM FOR MONITORING THE CONDITION OF BELT JOINTS DURING CONVEYOR OPERATION
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 34-39 Published: 2010

Times Cited: 37
10. RELIABILITY ANALYSIS OF RECONFIGURABLE MANUFACTURING SYSTEM STRUCTURES USING COMPUTER SIMULATION METHODS
By: Gola, Arkadiusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 21, Issue: 1, Pages: 90-102, Published: 2019

Times Cited: 36

 

 



Task „Implementation of procedures ensuring  the originality of scientific papers published in the quarterly „Eksploatacja i Niezawodność – Maintenance and Reliability” financed under contract 532/P-DUN/2018 from the funds of the Minister of Science and Higher Education for science dissemination activities.


logistic regression

Model oceny stanu narzędzia skrawającego dla systemu nadzoru w czasie rzeczywistym

Dalszy rozwój inżynierii produkcji, w szczególności obróbki skrawaniem, wymaga poszukiwania nowych innowacyjnych rozwiązań technologicznych. Dotyczy to w szczególności zaawansowanego przetwarzania danych pomiarowych pochodzących z systemów diagnostycznych i monitorujących. Rosnąca ilość danych gromadzonych przez wbudowane systemy pomiarowe wymaga opracowania skutecznych narzędzi analitycznych, aby efektywnie przekształcać dane w wiedzę i wdrażać autonomiczne obrabiarki przyszłości. Kwestia ta ma szczególne znaczenie dla oceny stanu narzędzia i przewidywania jego trwałości, które są kluczowe dla niezawodności i jakości procesu produkcyjnego. Dlatego opracowano nowy model matematyczny, którego zadaniem jest skuteczna klasyfikacja stanu ostrza narzędzia skrawającego realizowana w czasie rzeczywistym. Opracowany model został zweryfikowany na podstawie rzeczywistych danych pomiarowych z przemysłowej obrabiarki.

 

Assessment model of cutting tool condition for real-time supervision system

 

Further development of manufacturing technology, in particular machining requires the search for new innovative technological solutions. This applies in particular to the advanced processing of measurement data from diagnostic and monitoring systems. The increasing amount of data collected by the embedded measurement systems requires development of effective analytical tools to efficiently transform the data into knowledge and implement autonomous machine tools of the future. This issue is of particular importance to assess the condition of the tool and predict its durability, which are crucial for reliability and quality of the manufacturing process. Therefore, a mathematical model was developed to enable effective, real-time classification of the cutting blade status. The model was verified based on real measurement data from an industrial machine tool.

Zastosowanie regresji logistycznej do wyznacza nia macierzy prawdopodobieństw przejść stanów eksploatacyjnych w systemach transportowych

Przedsiębiorstwa transportowe mogą być traktowane jako wyodrębniony pod względem technicznym, organizacyjnym, ekonomicznym i prawnym system transportowy. Zachowanie jakości i ciągłości realizacji zleceń przewozowych wymaga wysokiego poziomu gotowości pojazdów oraz personelu (szczególnie kierowców). Kontrolowanie i sterowanie realizowanymi zadaniami wspierane jest modelami matematycznymi, umożliwiającymi ocenę i określenie strategii dotyczącej podejmowanych działań. Wsparcie procesów zarządzania polega głównie na analizie sekwencji kolejnych, realizowanych czynności (stanów). W wielu przypadkach taki ciąg czynności jest modelowany za pomocą procesów stochastycznych, spełniających własność Markowa. Ich klasyczne zastosowanie możliwe jest tylko w przypadku, gdy warunkowe rozkłady prawdopodobieństwa przyszłych stanów są określone wyłącznie przez bieżący stan eksploatacyjny. Identyfikacja takiego procesu stochastycznego polega głównie na wyznaczeniu macierzy prawdopodobieństw przejść międzystanowych. Niestety w wielu przypadkach analizowane ciągi czynności nie spełniają własności Markowa. Dodatkowo, na wystąpienie kolejnego stanu wpływa długość interwału czasowego pozostania systemu w określonym stanie eksploatacyjnym. W artykule przedstawiono metodę konstrukcji macierzy prawdopodobieństw przejść pomiędzy stanami eksploatacyjnymi. Wartości tej macierzy zależą od czasu przebywania obiektu w danym stanie. Celem artykułu było zaprezentowanie alternatywnej metody estymacji parametrów tej macierzy w sytuacji, gdy badany szereg nie spełnia własności Markowa. Wykorzystano w tym celu regresję logistyczną.

Application of the logistic regression for determining transition probability matrix of operating states in the transport systems

Transport companies can be regarded as a technical, organizational, economic and legal transport system. Maintaining the quality and continuity of the implementation of transport requisitions requires a high level of readiness of vehicles and staff (especially drivers). Managing and controlling the tasks being implemented is supported by mathematical models enabling to assess and determine the strategy regarding the actions undertaken. The support for managing processes relies mainly on the analysis of sequences of the subsequent activities (states). In many cases, this sequence of activities is modelled using stochastic processes that satisfy Markov property. Their classic application is only possible if the conditional probability distributions of future states are determined solely by the current operational state. The identification of such a stochastic process relies mainly on determining the probability matrix of interstate transitions. Unfortunately, in many cases the analyzed series of activities do not satisfy Markov property. In addition, the occurrence of the next state is affected by the length of time the system remains in the specified operating state. The article presents the method of constructing the matrix of probabilities of transitions between operational states. The values of this matrix depend on the time the object remains in the given state. The aim of the article was to present an alternative method of estimating the parameters of this matrix in a situation where the studied series does not satisfy Markov property. The logistic regression was used for this purpose.

 


SELECT PUBLICATION YEAR