THIS IS AN ARCHIVED VERSION OF OUR WEBSITE.

THE CURRENT VERSION OF OUR WEBSITE CAN BE FOUND:
http://ein.org.pl


ISSN 1507-2711
ISSN online 2956-3860

JOURNAL DOI: dx.doi.org/10.17531/ein

JCR Journal Profile


Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies  Wydawca(Publisher):Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne (Warszawa) - Polish Maintenance Society (Warsaw)   Patronat Naukowy(Scientific supervision): Polska Akademia Nauk o/Lublin  - Polish Akademy of Sciences Branch in Lublin  Członek(Member of): Europejskiej Federacji Narodowych Towarzystw Eksploatacyjnych  - European Federation of National Maintenance Societies


 We verify submissions originality with the use of iThenticate plagiarism checker


 All accepted articles are published Open Access under the Creative Commons Licence: CC-BY 4.0

Publisher:
Polish Maintenance Society
(Warsaw)

Scientific supervision:
Polish Academy of Sciences Branch in Lublin

Member of:
European Federation
of National Maintenance Societies


Attention!

In accordance with the requirements of citation databases, proper citation of publications appearing in our Quarterly should include the full name of the journal in Polish and English without Polish diacritical marks, i.e. "Eksploatacja i Niezawodnosc – Maintenance and Reliability".


 

Submission On-Line


The average number of weeks from article submission to the final decision: 4 weeks




http://scientific.thomsonreuters.com/cgi-bin/jrnlst/jloptions.cgi?PC=D

http://www.thomsonreuters.com/products_services/scientific/Journal_Citation_Reports

http://doaj.org

http://infobaseindex.com

http://www.info.scopus.com/why-scopus/publishers/?url=detail/what/publishers/

http://www.ebsco.com


MOST CITED

Update: 2021-07-01

1. COMPUTER-AIDED MAINTENANCE AND RELIABILITY MANAGEMENT SYSTEMS FOR CONVEYOR BELTS
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 16   Issue: 3   Pages: 377-382   Published: 2014

Times Cited: 59
2. ON APPROACHES FOR NON-DIRECT DETERMINATION OF SYSTEM DETERIORATION
By: Valis, David; Koucky, Miroslav; Zak, Libor

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 14, Issue: 1   Pages: 33-41   Published: 2012

Times Cited: 53
3. A NEW FAULT TREE ANALYSIS METHOD: FUZZY DYNAMIC FAULT TREE ANALYSIS
By: Li, Yan-Feng; Huang, Hong-Zhong; Liu, Yu; et al.

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 14, Issue: 3 Pages: 208-214 Published: 2012

Times Cited: 51
4. INNOVATIVE METHODS OF NEURAL RECONSTRUCTION FOR TOMOGRAPHIC IMAGES IN MAINTENANCE OF TANK INDUSTRIAL REACTORS
By: Rymarczyk, Tomasz; Klosowski, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 21 Issue: 2 Pages: 261-267 Published: 2019

Times Cited: 50
5. APPLICATION OF NEURAL RECONSTRUCTION OF TOMOGRAPHIC IMAGES IN THE PROBLEM OF RELIABILITY OF FLOOD PROTECTION FACILITIES
By: Rymarczyk, Tomasz; Klosowski, Grzegorz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 20 Issue: 3 Pages: 425-434 Published: 2018

Times Cited: 45
6. ASSESSMENT MODEL OF CUTTING TOOL CONDITION FOR REAL-TIME SUPERVISION SYSTEM
By: Kozlowski, Edward; Mazurkiewicz, Dariusz; Zabinski, Tomasz; Prucnal, Slawomir; Sep, Jaroslaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 21 Issue: 4 Pages: 679-685 Published: 2019

Times Cited: 40
7. PREDICTING THE TOOL LIFE IN THE DRY MACHINING OF DUPLEX STAINLESS STEEL
By: Krolczyk, Grzegorz; Gajek, Maksymilian; Legutko, Stanislaw

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume: 15 Issue: 1 Pages: 62-65 Published: 2013

Times Cited: 39
8. MAINTENANCE DECISION MAKING BASED ON DIFFERENT TYPES OF DATA FUSION
By: Galar, Diego; Gustafson, Anna; Tormos, Bernardo; et al.
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 
Volume 14, Issue: 2   Pages: 135-144   Published:2012

Times Cited: 38
9. TESTS OF EXTENDABILITY AND STRENGTH OF ADHESIVE-SEALED JOINTS IN THE CONTEXT OF DEVELOPING A COMPUTER SYSTEM FOR MONITORING THE CONDITION OF BELT JOINTS DURING CONVEYOR OPERATION
By: Mazurkiewicz, Dariusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Issue: 3 Pages: 34-39 Published: 2010

Times Cited: 37
10. RELIABILITY ANALYSIS OF RECONFIGURABLE MANUFACTURING SYSTEM STRUCTURES USING COMPUTER SIMULATION METHODS
By: Gola, Arkadiusz

EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY
Volume 21, Issue: 1, Pages: 90-102, Published: 2019

Times Cited: 36

 

 



Task „Implementation of procedures ensuring  the originality of scientific papers published in the quarterly „Eksploatacja i Niezawodność – Maintenance and Reliability” financed under contract 532/P-DUN/2018 from the funds of the Minister of Science and Higher Education for science dissemination activities.


Mike Gerdes

Wykorzystanie drzew decyzyjnych oraz wpływu parametrów ekstrakcji cech do projektowania odpornych sieci czujników

Niezawodne monitorowanie stanu wymaga niezawodności czujników i pochodzących z nich informacji. Systemy złożone są zazwyczaj monitorowane przez wiele czujników, co pozwala na  ocenę stanu technicznego oraz aspektów eksploatacyjnych. Gdy jeden z czujników ulega uszkodzeniu, uniemożliwia to obliczenie bieżącego stanu systemu z dotychczasową niezawodnością lub uzyskanie kompletnych informacji o bieżącym stanie. Stan można co prawda monitorować nawet przy niekompletnych danych, ale wyniki takiego monitorowania mogą nie odpowiadać rzeczywistemu stanowi systemu.  Sytuacja taka ma miejsce w szczególności, gdy uszkodzony czujnik jest odpowiedzialny za monitorowanie istotnego parametru systemu. Problem uszkodzenia czujnika można rozwiązywać na dwa sposoby. Pierwszy polega na zwiększeniu złożoności systemu, co umożliwia jego sprawniejsze działanie w sytuacji, gdy dane są niekompletne. Drugim sposobem jest wprowadzenie nadmiarowego sprzętu (hardware'u) lub oprogramowania. Niezawodność czujników stanowi krytyczny aspekt systemu. Oczywiście, ze względu na ograniczenia przestrzenne, ekonomiczne i środowiskowe nie wszystkie czujniki w systemie mogą być nadmiarowe. Redundancja powinna dotyczyć wszystkich czujników, które dostarczają istotnych informacji na temat stanu systemu, natomiast dopuszczalne są błędy mniej ważnych czujników. W niniejszej pracy pokazano jak obliczać istotność informacji o systemie dostarczanych przez poszczególne czujniki z wykorzystaniem metod przetwarzania sygnałów oraz drzew decyzyjnych. Zademonstrowano również w jaki sposób parametry przetwarzania sygnałów wpływają na poprawność klasyfikacji metodą drzewa decyzyjnego, a tym samym na poprawność dostarczanych informacji. Drzew decyzyjnych używa się do obliczania i porządkowania cech w oparciu o przyrost informacji charakteryzujący poszczególne cechy. Podczas weryfikacji zastosowanej metody, drzewa decyzyjne wykorzystano do klasyfikacji uszkodzeń celem przedstawienia wpływu różnych cech na dokładność klasyfikacji. Pracę kończy analiza wyników eksperymentów pokazujących w jaki sposób zastosowana metoda pozwala na klasyfikację różnych błędów z 75-procentowym prawdopodobieństwem oraz jak różne opcje ekstrakcji cech wpływają na przyrost informacji.

Decision trees and the effects of feature extraction parameters for robust sensor network design

Reliable sensors and information are required for reliable condition monitoring. Complex systems are commonly monitored by many sensors for health assessment and operation purposes. When one of the sensors fails, the current state of the system cannot be calculated in same reliable way or the information about the current state will not be complete. Condition monitoring can still be used with an incomplete state, but the results may not represent the true condition of the system. This is especially true if the failed sensor monitors an important system parameter. There are two possibilities to handle sensor failure. One is to make the monitoring more complex by enabling it to work better with incomplete data; the other is to introduce hard or software redundancy. Sensor reliability is a critical part of a system. Not all sensors can be made redundant because of space, cost or environmental constraints. Sensors delivering significant information about the system state need to be redundant, but an error of less important sensors is acceptable. This paper shows how to calculate the significance of the information that a sensor gives about a system by using signal processing and decision trees. It also shows how signal processing parameters influence the classification rate of a decision tree and, thus, the information. Decision trees are used to calculate and order the features based on the information gain of each feature. During the method validation, they are used for failure classification to show the influence of different features on the classification performance. The paper concludes by analysing the results of experiments showing how the method can classify different errors with a 75% probability and how different feature extraction options influence the information gain.


SELECT PUBLICATION YEAR