proces gamma
Wyznaczanie rozkładu czasów życia oraz wnioskowanie dla systemów wymagających pomiarów współistniejących degradacji w oparciu o procesy gamma
Wraz z rozwojem nauki i techniki, powstaje coraz więcej systemów inżynieryjnych o wysokich parametrach niezawodnościowych, które zwykle charakteryzują się złożoną strukturą i złożonymi mechanizmami uszkodzeń. Ocena niezawodności w przypadku takich systemów wymaga pomiarów współwystępujących procesów degradacji . W pewnych sytuacjach fizycznych, degradacja właściwości użytkowych systemu będzie zawsze dodatnia oraz ściśle rosnąca. Proces degradacji jest zwykle procesem gamma, który charakteryzują niezależne i nieujemne przyrosty. W niniejszej pracy, założono, że system ma wiele zależnych charakterystyk pracy oraz że ich degradację można modelować procesem gamma. W przypadkach takiej wielowymiarowej degradacji obejmującej trzy lub więcej charakterystyk pracy zaproponowano zastosowanie rozkładu Birnbauma-Saundersa (uwzględniającego wiele zmiennych) oraz jego rozkładów brzegowych do aproksymacji funkcji niezawodności oraz określania odpowiadającego jej rozkładu czasu pracy. Opracowano metodę wnioskowania dla parametrów modelu. Wreszcie, dla zilustrowania proponowanego modelu oraz metody, omówiono przykład symulacyjny oraz przedstawiono niektóre wyniki obliczeniowe.
Lifetime Distribution and Associated Inference of Systems with Multiple Degradation Measurements Based on Gamma Processes
With development of science and technology, many engineering systems take on high reliable characteristic and usually have complex structure and failure mechanisms, with their reliability being evaluated by multiple degradation measurements. In certain physical situations, the degradation of these performance characteristics would be always positive and strictly increasing. Therefore, the gamma process is usually considered as a degradation process due to its independent and non-negative increments properties. In this paper, we suppose that a system has multiple dependent performance characteristics and that their degradation can be modeled by gamma processes. For such a multivariate degradation involving three or more performance characteristics, we propose to use a multivariate Birnbaum-Saunders distribution and its marginal distributions to approximate the reliability function and give the corresponding lifetime distribution. And then, the inferential method for the model parameters is developed. Finally, for an illustration of the proposed model and method, a simulated example is discussed and some computational results are presented.
Reliability assessment for systems with two performance char acteristics based on gamma processes with marginal heterogeneous random effects
W niniejszym artykule opracowano sposób modelowania niezawodności produktów posiadających dwa parametry użytkowe związane z dwoma procesami degradacji. Procesy takie można modelować łącznie wykorzystując funkcję kopuły, która pozwala na analizę struktury zależności między procesami degradacji. Proponowane podejście zakłada, że na stochastyczne zachowanie każdego z parametrów użytkowych wpływają różne efekty losowe. Przy takim założeniu, należy wziąć pod uwagę różne modele dwuwymiarowe, w których rozkłady brzegowe są brzegowymi procesami gamma z niejednorodnymi efektami losowymi. Jako że efekty losowe mogą być odmienne dla różnych parametrów użytkowych, zaproponowano różne modyfikacje struktury parametrów procesu gamma, takie, że efekty losowe wpływają zarówno na dryf jak i dyfuzję, tylko na dryf, lub tylko na dyfuzję procesów brzegowych gamma. Wnioskowanie statystyczne dla wspólnych modeli dwuwymiarowych przeprowadzono metodą Bayesa. Uzyskane wyniki pokazują, że dwuwymiarowy model z niejednorodnymi efektami losowymi ma nieznaczną przewagę nad pozostałymi zaproponowanymi modelami. Oznacza to, że dwuwymiarowe modele procesu gamma z niejednorodnymi efektami losowymi mogą stanowić lepszy sposób modelowania wielowymiarowych danych degradacyjnych, tym samym umożliwiając lepszą ocenę niezawodności badanego produktu.
Reliability assessment for systems with two performance char acteristics based on gamma processes with marginal heterogeneous random effects
In this paper, a reliability modeling approach for products with two performance characteristics related to two degradation processes is developed. The joint modeling of such processes is performed by using a copula function in order to consider the dependence structure between degradation processes. The proposed approach considers that different random effects affect the stochastic behavior of each performance characteristic. For such approach, different bivariate models with marginal gamma processes with heterogeneous random effects as marginal distributions are considered. As the random effects may differ between performance characteristics, different modifications of the structure of the parameters of the gamma process are proposed. Such that the random effects affect both the drift and diffusion, just the drift, and just the diffusion of the marginal gamma processes. The statistical inference of the joint bivariate models is performed via Bayesian approach. The obtained results show that a bivariate model with heterogeneous random effects has a slight better performance among the proposed models. Which implies that the bivariate heterogeneous random effects gamma process models may provide a better approach to model multivariate degradation data, and thus a better reliability assessment of the product under study.
Ocena niezawodności z wykorzystaniem stochastycznego modelu wzrostu temperatury w metalowych wytłoczkach, uwzględniającego wielorakie zmienne naprężeniowe oraz efekty losowe
Wiele produktów zużywa się z upływem czasu zanim nawet ulegną uszkodzeniu lub przestaną działać. Badania przyspieszonego starzenia pozwalają wyciągać wnioski na temat parametrów statystycznych lub rozkładów okresu użytkowania produktu. Wiele urządzeń podlega różnym rodzajom zmienności pod wpływem działania nieobserwowalnych czynników występujących podczas procesu produkcyjnego lub w pewnych warunkach pracy; sytuacje te wymagają opracowania modeli przyspieszonego starzenia uwzględniających wielorakie zmienne przyspieszenia oraz efekty losowe. Zaproponowany w przedstawionym artykule model opiera się na procesie gamma z efektami losowymi, dzięki czemu pozwala na lepszą analizę degradacji. Model ten zastosowano do analizy wzrostu temperatury w metalowych wytłoczkach, na które oddziałuje wiele zmiennych objaśniających. Ponadto do oszacowania nieznanych parametrów wykorzystano metodę wnioskowania statystycznego opartą na podejściu bayesowskim. Umożliwiło to analizę niezawodności po uzyskaniu rozkładów czasu pierwszego przejścia.
Stochastic modelling of the temperature increase in metal stampings with multiple stress variables and random effects for reliability assessment
Many products wear out over time even before they fail or stop working, therefore, through accelerated degradation tests one is able to make inferences about statistical parameters or the distributions of a product useful life. Since many devices experience different types of variation due to unobservable factors during the manufacturing processes or under certain operating conditions; these situations lead to the need in developing accelerated degradation models with several variables of acceleration and random effects. The proposed model in this paper, is a model based on the gamma process with random effects to have a better analysis of degradation. This model is applied to the analysis of the temperature increase of metal stampings that are affected by multiple explanatory variables. In addition, a statistical inference method based on a Bayesian approach is used to estimate the unknown parameters to then perform a reliability analysis after obtaining the first-passage time distributions.