Yanfeng LI
Reliability Based Optimal Preventive Maintenance Policy of Series-parallel systems
To reduce the maintenance cost and improve the effectiveness of the maintenance activities in series-parallel systems, a preventive maintenance (PM) decision model for series-parallel systems subject to reliability was developed. This model considered the effect of failure maintenance on PM cycle and the restriction of system reliability in maintenance decision making, thus can help decision-maker to arrange appropriate and effective maintenance activities. Finally, an example was given to validate the proposed model.
Analiza niezawodności systemu wielostanowego z uszkodzeniem spowodowanym wspólną przyczyną w oparciu o sieci bayesowskie
Uwzględniając wpływ uszkodzeń spowodowanych wspólną przyczyną (CCF) na niezawodność systemów oraz powszechne występowanie w praktyce inżynierskiej systemów wielostanowych (MSS), zaproponowano metodę modelowania i oceny niezawodności systemu wielostanowego z uszkodzeniem spowodowanym wspólną przyczyną, która wykorzystuje reprezentację graficzną sieci Bayesa (BN) i oparte na nich wnioskowanie przybliżone. Model zastosowano do analizy układu przenoszenia napędu dwu-osiowego mechanizmu pozycjonowania. Zbadano w ten sposób skuteczność modelu oraz możliwość wykorzystania go do bezpośredniego obliczania niezawodności systemu na podstawie wielostanowych prawdopodobieństw elementów składowych. W pierwszej kolejności stworzono schemat blokowy niezawodności uwzględniający hierarchię struktury i funkcji badanego systemu wielostanowego. Następnie, w oparciu o schemat blokowy niezawodności, logikę uszkodzeń komponentów oraz rozkład prawdopodobieństwa uszkodzeń tych komponentów, skonstruowano tradycyjny model bayesowski układu przenoszenia napędu. W niniejszej pracy wykorzystano model współczynnika β do analizy CCF układu przenoszenia napędu oraz opracowano nową sieć Bayesa uwzględniającą CCF, po czym przeprowadzono na ich podstawie analizę niezawodności. Skuteczność i dokładność proponowanej metody sprawdzono poprzez porównanie jej z metodą nie wykorzystującą CCF.
Reliability analysis of multi-state system with common cause failure based on bayesian networks
Taking account of the influence of common cause failure (CCF) to system reliability and the widespread presence of multi-state system (MSS) in engineering practices, a method for reliability modeling and assessment of a multi-state system with common cause failure is proposed by taking the advantage of graphic representation and uncertainty reasoning of Bayesian Network (BN). The model is applied to a two-axis positioning mechanism transmission system to demonstrate its effectiveness and capability for directly calculating the system reliability on the basis of multi-state probabilities of components. Firstly, the reliability block diagram is built according to the hierarchy of structure and function of multi-state system. Then, the traditional Bayesian Networks model of the transmission system is constructed based on the reliability block diagram, failure logic between components and the failure probability distribution of them. In this paper, the β-factor model is used to analyze the CCF of the transmission system, and a new Bayesian network combining with CCF is established following by the implementation of reliability analysis. Finally, the comparison between the proposed method and the one without considering CCF is made to verify the efficiency and accuracy of the proposed method.