Metoda analizy niepewności oparta na połączeniu zasady maksymalnej entropii i metody oceny punktowej
Uncertainty analysis method based on a combination of the maximum entropy principle and the point estimation metod
Niepewność jest nieodłącznym elementem procesów projektowania produktu. Dlatego też podejmowanie niezawodnych decyzji wymaga analizy niepewności, która uwzględniałaby wszystkie rodzaje niepewności. W praktyce inżynierskiej, z powodu niepełnej wiedzy, wyznaczenie rozkładu niektórych zmiennych projektowych nie jest możliwe. Co więcej, funkcja stanu granicznego jest wysoce nieliniowa, co sprawia, że do poprawnego obliczenia prawdopodobieństwa uszkodzenia potrzebna jest znajomość momentów wyższych rzędów tej funkcji. W niniejszej pracy zaproponowano metodę analizy niepewności łączącą zasadę maksymalnej entropii z metodą bootstrapową. W pierwszej części pracy wykorzystano metodę bootstrapową do obliczenia przedziałów ufności czterech pierwszych momentów dla zmiennych losowych typu mieszanego oraz zmiennych z próby. Następnie, wyznaczono momenty wyższych rzędów funkcji stanu granicznego przy użyciu metody redukcji wymiarów. Po trzecie, w celu obliczenia funkcji gęstości prawdopodobieństwa (PDF) oraz dystrybuanty (CDF) funkcji stanu granicznego, sformułowano model optymalizacji oparty na zasadzie maksymalnej entropii. Proponowana metoda nie wymaga założenia znajomości rozkładów zmiennych losowych ani obliczania wrażliwości dla funkcji stanu granicznego w odniesieniu do najbardziej prawdopodobnego punktu awarii. W końcowej części artykułu porównano na podstawie przykładów numerycznych wyniki otrzymane za pomocą proponowanej metody oraz symulacji Monte Carlo (MCS).
Uncertainty is inevitable in product design processes. Therefore, to make reliable decisions, uncertainty analysis incorporating all kinds of uncertainty is needed. In engineering practice, due to the incomplete knowledge, the distribution of some design variables can not be determined. Furthermore, the performance function is highly nonlinear, therefore, the high order moments of the performance function are needed to calculate the probability of failure accurately. In this paper, an uncertainty analysis method combining the maximum entropy principle and the bootstrapping method is proposed. Firstly, the bootstrapping method is used to calculate the confidence intervals of the first four moments for mixed random variables and sample variables. Secondly, the high order moments of limit state functions are estimated using the reduced dimension method. Thirdly, to calculate the probability density function (PDF) and cumulative distribution function (CDF) of the limit state functions, an optimization model based on the maximum entropy principle is formulated. In the proposed method, the assumptions that the distribution of the random variables are known and the calculation of the sensitivity for limit state function with respect to the Most Probable Point (MPP) are avoided. Finally, comparisons of results from the proposed methods and the MCS method are presented and discussed with numerical examples.
114-119