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1. Introduction

Reliability is central to productivity and effectiveness of real 
world industrial systems [22, 35]. To maximize productivity, the sys-
tems should always be available. However, it is difficult for an indus-
trial system, comprising several complex components to survive over 
time since its reliability directly depends on the characteristics of its 
components. Failure is inevitable, such that system reliability optimi-
zation has become a key subject area in industry. Developing effec-
tive system reliability optimization is imperative. Two approaches for 
system reliability improvement are: (i) using redundant elements in 
subsystems, and (ii) increasing the reliability of system components.

Reliability-redundancy allocation maximizes system reliability 
via redundancy and component reliability choices [23], with restric-
tions on cost, weight, and volume of the resources. The aim is to find a 
trade-off between reliability and other resource constraints [22]. Thus, 
for a highly reliability system, the main problem is to balance reliabil-

ity enhancement and resource consumption. A number of approaches 
in the literature focus on the application of metaheuristic methods for 
solving system reliability optimization problems [9, 7, 27, 15, 33, 34, 
10, 13]. However, real-life reliability optimization problems are com-
plex: 

management goals and the constraints are often imprecise; (i)	

problem parameters as understood by the decision maker may (ii)	
be vague; and, 

historical data is often imprecise and vague. (iii)	

Uncertainties in component reliability may arise due to variability 
and changes in the manufacturing processes that produce the system 
component. Such uncertainties in data cannot be addressed by proba-
bilistic methods which deal with randomness. Therefore, the concept 
of fuzzy reliability is more promising [2, 4, 5, 6, 30, 31]. Contrary to 
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probabilistic models, fuzzy theoretic approaches address uncertainties 
that arise from vagueness of human judgment and imprecision [26, 3, 
28, 1, 13, 14].

A number of methods and applications have been proposed to 
solve fuzzy optimization problems by treating parameters (coeffi-
cients) as fuzzy numerical data. [31, 11, 20, 21, 24]. In a fuzzy multi-
criteria environment, simultaneous reliability maximization and cost 
minimization requires a trade-off approach. Metaheuristics are a po-
tential application method for such complex problems [9]. Population 
based metaheuristics are appropriate for finding a set of solutions that 
satisfy the decision maker’s expectations. This calls for interactive 
fuzzy multi-criteria optimization which incorporates preferences and 
expectations of the decision maker, allowing for expert judgment. 
Iteratively, it becomes possible to obtain the most satisfactory solu-
tion.

In light of the above issues, the aim of this research is to address 
the system reliability optimization problem for a complex bridge sys-
tem in a fuzzy multi-criteria environment. Specific objectives of the 
research are (1) to develop a fuzzy multi-criteria decision model for 
the problem; (2) to use an aggregation method to transform the model 
to a single-criteria optimization problem; and, (3) to develop a multi-
criteria optimization method for the problem.

The rest of the paper is organized as follows: The next section 
describes the problem formulation for the complex bridge system. 
Section 3 provides a general fuzzy multi-criteria optimization model-
ling approach. In Section 4, a fuzzy multi-criteria genetic algorithm 
approach is proposed. Computational experiments, results and discus-
sions are presented in Section 5. Section 6 concludes the paper.

2. Problem formulation

This section presents the mathematical formulation for the reli-
ability optimization for a complex bridge system. In the real world, 
a typical complex bridge system [23] comprises five components or 
subsystems. The general structure of the complex bridge system is 
illustrated in Fig. 1.

The aim is to maximize system reliability, subject to multiple lin-
ear constraints. In this respect, we present the following notations and 
assumptions;

Notations:
m	 the number of subsystems in the system
ni	 the number of components in subsystem i, 1≤ i ≤ m
n	 ≡(n1, n2, …, nm), the vector of the redundancy allocation for 

the system
ri	 the reliability of each component in subsystem i, 1≤ i ≤ m
r	 ≡ (r1, r2, …, rm), the vector of the component reliabilities for 

the system
qi	 =1 - ri, the failure probability of each component in subsystem 

i, 1≤ i ≤ m	

Ri(ni)	 =1 ,in
iq− the reliability of subsystem i, 1 i m≤ ≤

Rs	 the system reliability
gi	 the ith constraint function

wi	 the weight of each component in subsystem i, 1≤ i ≤ m
vi	 the volume of each component in subsystem i, 1≤ i ≤ m
ci	 the cost of each component in subsystem i, 1≤ i ≤ m
V	 the upper limit on the sum of the subsystems’ products of vol-

ume and weight
C	 the upper limit on the cost of the system
W	 the upper limit on the weight of the system
b	 the upper limit on the resource
αi, βi,	 parameters in constraint functions of subsystem i

Assumptions
The availability of the components is unlimited;1.	
The weight and product of weight and square of the volume of 2.	
the components are deterministic;
The redundant components of individual subsystems are iden-3.	
tical;
Failures of individual components are independent;4.	
All failed components will not damage the system and are not 5.	
repaired.

The problem can be formulated as a mixed integer nonlinear pro-
gramming model as follows [8, 34, 35]:

Max ( )η r,n = + + + +
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where, η(·) denotes the system reliability, and expressions g1(·), g2(·), 
and g3(·) represent the total volume, cost, and weight of the system, 
respectively. 

In the next section, we propose a general approach to fuzzy multi-
criteria optimization, in the context of system reliability optimiza-
tion.

3. Fuzzy multi-criteria optimization modelling

In a fuzzy environment, the aim is to find a trade-off between 
reliability, cost, weight and volume. A common approach is to simul-
taneously maximize reliability and minimize cost. Constraints are 
transformed into objective functions, so that reliability and other cost 
functions can be optimized jointly. This is achieved through the use of 
membership functions, which are easily applicable and adaptable to 
the real life decision process. 

In general, the fuzzy multi-criteria optimization problem can be 
represented by the following [13, 29];
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where, x = (x1, x2,…,xQ)T, is a vector of decision variables that opti-
mize a vector of objective functions, ῆ(x) = {ῆ1(x), ῆ2(x),…,ῆh(x)} are 

Fig. 1. The schematic diagram of the complex bridge system
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h individual objective functions over the decision space X; υq and ῡq 
are lower and upper bounds on the decision variable xq, respectively. 
Note that expressions g1(·), g2(·) and g3(·) in (1) are converted into 
objective functions.

Fuzzy set theory permits gradual assessment of membership, 
in terms of a suitable function that maps to the unit interval [0,1]. 
Membership functions such as Generalized Bell, Gaussian, Trian-
gular and Trapezoidal can represent the fuzzy membership [31]. 
Linear membership functions can provide good quality solutions 
with much ease, including the widely recommended triangular and 
trapezoidal membership functions [6, 8, 11, 30, 31]. Thus, we use 
linear functions to define fuzzy memberships of objective functions 
(or decision criteria).

Let at and bt denote the minimum and maximum feasible values 
of each objective function ῆt(x), t = 1,2,…,h, where h is the number of 
objective functions. Let µηt  denote the membership function corre-
sponding to the objective function ft. Then, the membership function 
corresponding to minimization and maximization is defined based on 
satisfaction degree. Fig. 2 illustrates the linear membership functions 
defined for minimization and maximization.

As shown in Fig. 2(a), the linear membership function is suitable 
for representing cost functions that should be minimized. The mem-
bership function is represented as follows;
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The linear membership function shown in Fig. 2(b) is suitable for 
representing profit functions that should be maximized. The member-
ship function is represented as follows;
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Having defined the fuzzy model using membership functions, 
the corresponding crisp model is formulated. Fuzzy evaluation 
enables FMGA to cope with infeasibilities which is otherwise im-
possible with crisp formulation. This gives the algorithm speed 
and flexibility, which ultimately improves the search power of the 
algorithm.

4. A fuzzy multi-criteria genetic algorithm approach

FMGA is an improvement from the classical genetic algorithm 
(GA). GA is a stochastic global optimization technique that evolves 
a population of candidate solutions by giving preference of survival 

to quality solutions, while allowing some low quality solutions to 
survive, to maintain diversity in the population [18]. Each candidate 
solution is coded into a string of digits, called chromosomes. New 
offspring are obtained from probabilistic genetic operators, such as 
selection, crossover (at probability pc), mutation (at a probability pm), 
and inversion [16]. A comparison of new and old (parent) candidates 
is done based on a given fitness function, retaining the best perform-
ing candidates into the next population. Characteristics of candidate 
solutions are passed through generations using genetic operators. The 
overall flow of the FMGA is presented in Fig. 3. 

4.1.	 Chromosome coding

Traditionally, candidate solutions were encoded as binary strings. 
In the FMGA, each candidate solution is encoded into a chromosome 
using the variable vectors n and r. An integer variable ni is coded as a 
real variable and transformed to the nearest integer value upon objec-
tive function evaluating.

4.2.	 Initialization and evaluation

An initial population of the desired size, pop, is randomly gen-
erated. FMGA then computes the objective function for each string 
(chromosome). The string is then evaluated according to the overall 
objective function in the model.

To improve flexibility and to incorporate the decision maker’s 
preferences into the model, we introduce user-defined weightings, 
w = {w1, w2,…,wh}. We use the max-min operator to aggregate the 
membership functions of the objective functions, incorporating ex-
pert opinion. Thus, from models (1) and (2), constraints g1(·), g2(·), 
and g3(·) which represent volume, cost, and weight, respectively, are 
transformed into objective functions using the fuzzy membership 
functions. This leads to a multiple criteria system reliability optimiza-
tion model, consisting of five criteria namely, reliability, volume, cost, 
and weight. In addition, the model is converted into a single objective 
optimization model as follows:

Fig. 2. Fuzzy membership functions for ηt(x)

Fig. 3. The overall pseudo-code of the FMGA
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Here, µ µ µ µη η η ηt h
x x x x( ) { ( ), ( ),..., ( )}=

1 2
signifies a set of fuzzy re-

gions that satisfy the objective functions λt which denote the degree of 
satisfaction of the tth objective; x is a vector of decision variables; wt 
is the weighting of the tth objective function; and symbol “˄” is the 
aggregate min operator. Thus, expression (1˄λ1(x)/w1) gives the mini-
mum between 1 and λ1(x)/w1. Though λ1(x) are in the range [0,1], the 
value of λ1(x)/w1 may exceed 1, howbeit, the final value of (1˄λ1(x)/
w1) will always lie in [0,1]. A FMGA approach is used to solve the 
model.

4.3.	 Selection and crossover

Several selection strategies have been suggested in [16]. The re-
mainder stochastic sampling without replacement is preferred; each 
chromosome j is selected and stored in the mating pool according to 
the expected count ej;

	 e
f

f pop
j

j

jj
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=∑ 1

	 (6)

where, fj is the objective function value of the jth chromosome. Each 
chromosome receives copies equal to the integer part of ei, while the 
fractional part is treated as success probability of obtaining additional 
copies of the same chromosome into the mating pool.

Genes of selected parent chromosomes are partially exchanged 
to produce new offspring. We use an arithmetic crossover operator 
which defines a linear combination of two chromosomes [25][29]. 
Assume a crossover probability of 0.41. Let p1 and p2 be two parents 
randomly selected for crossover. Then, the resulting offspring, q1 and 
q2, are given by the following expression;
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where, ε represents a random number in the range [0,1].

4.5.	 Mutation

Mutation is applied to every new chromosome so as to maintain 
diversity of the population, howbeit, at a very low probability. A uni-
form mutation probability rate of 0.032 is applied.

4.6 .	 Replacement

At each generation or iteration, new offspring may be better or 
worse. As a result, nonperforming chromosomes should be replaced. 
A number of replacement strategies exist in the literature, e.g., proba-
bilistic replacement, crowding strategy, and elitist strategy [26]. The 
proposed FMGA uses a hybrid of these strategies.

4.7.	 Termination

The FMGA algorithm uses two termination criteria to stop the 
iterations: when the number of generations exceeds the user-defined 

maximum iterations, and when the average change in the fitness of 
the best solution over specific generations is less than a small number, 
which is 10-5.

5. Computational illustrations

This section presents the computational experiments, results and 
discussions based on benchmark problems in [17, 19].

5.1.	 Computational experiments

We use the parameter values in [23] and define the specific in-
stances of the problems as shown in Table 1.

The FMGA was implemented in JAVA on a 3.06 GHz speed pro-
cessor with 4GB RAM. The FMGA crossover and mutation param-
eters were set at 0.45 and 0.035, respectively. A two-point crossover 
was used in this application.  The population size was set to 20, and 
the maximum number of generations was set at 500. The termination 
criteria was controlled by either the maximum number of iterations, or 
the order of the relative error set at 10-5, whichever is earlier. When-
ever the best fitness f* at iteration t is such that |ft – f*| < ε is satisfied, 
then five best solutions are selected; where ε is a small number, which 
was set at value ε = 10-5 for the computational experiments.

Expression (5) is used to solve benchmark problems. A fuzzy re-
gion of satisfaction is constructed for each criterion, that is, system 
reliability, cost, volume, and weight, denoted by λ1, λ2, λ3, and λ4, 
respectively. By using the constructed membership functions together 
with their corresponding weighting vectors, an equivalent crisp opti-
mization formulation is obtained [29];
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The set ω = {ω1, ω2, ω3, ω4} are user-defined weightings in the 
range [0.2,1] that indicate the bias towards specific decision crite-
ria. To illustrate, given the weighting set ω = [1,1,1,1], the expert 
user expects no bias towards any criterion. On the contrary, set ω 
= [1,0.4,0.4,0.4], indicates preferential bias towards the region with 
higher reliability values as compared to the rest of the criteria equally 
weighted at 0.4. Consequently, the decision process considers the ex-
pert opinion and preferences of the decision maker.

Rather than prescribing a single solution to the user or decision 
maker, the FMGA interactively provides a population of near-optimal 

Table 1. Basic data used for the bridge complex system

i 105αi βi wivi
2 wi V C W

1 2.330 1.5 1 7 110 175 200

2 1.450 1.5 2 8 110 175 200

3 0.541 1.5 3 8 110 175 200

4 8.050 1.5 4 6 110 175 200

5 1.950 1.5 2 9 110 175 200
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5.2.1.	 Experiment 1 results

Figure shows a plot of the variation of the best fitness in each 
generation over a run time of 250 generations. After 250 generations, 
the following solution is obtained as the best solution: the maximum 
system reliability is Rs = 0.999958830. The reliability for the 5 con-
stituent components are r1 = 0.81059326:3, r2 = 0.85436730, r3 = 
0.88721528, r4 = 0.72126594 and r5 = 0.71732358. The resulting sys-
tem cost Cs = 175.000.

It can be seen that the algorithm converged to a desirable solution 
within about 200 iterations (generations). This indicates the potential 
of the algorithm in terms of computational efficiency.

5.2.2.	 Experiment 2 results

Computational results from experiment 2 showed the perform-
ance of FMGA as compared to other best known algorithms. The best 
five FMGA solutions were compared with the best results obtained 
from the literature [8][35]. 

Tables 3 presents the best five FMGA solutions, and the best known 
solutions obtained from [8] (with system reliability Rs = 0.999958830, 
cost Cs = 175.00, weight Ws = 195.7352300, and Vs = 92.00). It can 
be seen that, based on system reliability, cost, weight and volume,  the 
five FMGA solutions are better than the best known results, except 
for a single weight value from solution S1 (that is, 196.988273245) 
which is slightly higher than the best known (that is, 195.7352300). 
Further, all the five best FMGA solutions outperformed the solutions 
in [35], based on all performance criteria. This indicates that, overall, 
the FMGA performs better than the previous algorithms.

Table 4 presents the percentage improvement of the FMGA solu-
tions, using the best known results as benchmarks. The improvements 
in reliability, cost, weight and volume are denoted by IR, IC, IW and 

solutions. The algorithm enables the decision maker to specify the 
minimum and maximum values of objective functions in terms of reli-
ability η1, cost η2, volume η3, and weight η4. Table 2 provides a list of 
selected minimum and maximum values of the objective functions for 
the complex bridge system.

Two experiments were conducted: Experiment 1 and Experiment 2.

5.1.1 Experiment 1 
The aim of experiment 1 was to demonstrate the performance of 

the FMGA algorithm over time. As such, the algorithm was executed 
for 500 iterations, to show the results of intermediate solutions over 
time. A graphical analysis of the results was presented to show the 
performance behaviour of the algorithm.

5.1.2 Experiment 2 
This purpose of experiment 2 was to make a comparative analysis 

of the performance of the FMGA algorithm against best known algo-
rithms in the literature. Thus, the algorithm was executed 25 times, 
and the best five solutions were selected. The experimental results 
were compared with best known algorithms in [17] and [19], based 
on four performance criteria namely, reliability Rs, cost Cs, weight 
Ws, and volume Vs. 

For further comparative analysis, an improvement measure is de-
fined Rs, Cs, Ws and Vs values obtained. Thus, for each value, the 
percentage improvement I is defined according to the following ex-
pression:

	
I v v vs best best= −( )( )×100% 	 (9)

where, vs and vbest represent the FMGA solution value and the best 
known solution from literature. Computational results and the ensuing 
discussions are presented in the next section.

5.2	 Computational results and discussions

This section presents the results of the computational experiments 
outlined in the previous section.

Table 2.	 Minimum and maximum values of objective functions

η1 η2 η3 η4

bt 1 180 190 110

at 0.6 60 70 20

Fig. 4. Best system reliability value convergence over generations

Table 3. FMGA performance against other algorithms 

Best 3 FMGA Solutions Chen (2006) [8] Wu et al. (2011) 
[35]

S1 (ri: ni) S2 (ri: ni) S3 (ri: ni) S4 (ri: ni) S5 (ri: ni) (ri: ni) (ri: ni)

1 0.790900512:4 0.828215087:2 0.825219610:3 0.817014473:3 0.820167554:3 0.81059326:3 0.82868361:3

2 0.867626123:3 0.819984805:3 0.853758959:3 0.845485199:3 0.851049098:3 0.85436730:3 0.85802567:3

3 0.902336897:3 0.894109978:4 0.894923994:3 0.913250236:3 0.905656019:3 0.88721528:3 0.91364616:2

4 0.803110963:1 0.833583709:1 0.757171007:2 0.812419422:1 0.750141630:2 0.72126594:3 0.64803407:4

5 0.625300922:1 0.763449829:1 0.677263922:1 0.682027145:1 0.640392747:2 0.71732358:1 0.70227595:1

Rs 0.9999928538 0.9999863254 0.9999758049 0.9999882710 0.9999731313 0.999958830 0.999889630

Cs 174.99949346 174.99999999 174.86624115805 174.99989705 174.81703492 175.0000000 174.9999960

Ws 196.988273245 180.13549794 177.41388514487 165.33338239 195.53463927 195.7352300 198.4395340

Vs 67.00 76.00 72.00 60.00 78.00 92.00000000 105.0000000
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IV, respectively. The results show positive improvements of all the 
criteria. As indicated by the average values in the last column, there 
was remarkable improvement in volume, weight, cost and reliability, 
in that order of magnitude. 

Overall, the proposed algorithm is more reliable and effective than 
existing algorithms in the literature. The algorithm offers a number of 
practical advantages to the decision maker, including the following:

The FMGA method addresses the conflicting multiple objec-•	
tives of the problem, giving a trade-off between the objec-
tives;
The approach accommodates the decision maker’s fuzzy pref-•	
erences;
The method gives a population of alternative solutions, rather •	
than prescribe a single solution;
The method is practical, flexible and easily adaptable to prob-•	
lem situations.

In view of the above advantages, FMGA is a useful decision sup-
port tool for the practicing decision maker in system reliability opti-
mization, especially in a fuzzy environment.

6. Conclusions

Decision makers in system reliability optimization seek to satis-
fice reliability enhancement and cost minimization. In a fuzzy envi-
ronment, management goals and constraints are often imprecise and 
conflicting. One most viable and useful option is to us a fuzzy satisfic-

ing approach that includes the preferences 
and expert judgments of the decision mak-
er. This study provided a multi-criteria 
non-linear mixed integer program for reli-
ability optimization of a complex bridge 
system. Using fuzzy multi-criteria evalua-
tion, the model is converted into a single-
objective model. Thus, FMGA uses fuzzy 
evaluation to find the fitness of candidates 
in each population. Illustrative computa-
tion experiments showed that the FMGA 

approach is highly capable of providing near optimal solutions.
Contrary to single-objective approaches which optimize system 

reliability only, FMGA provides satisficing solutions in the presence 
of fuzzy multiple criteria. Furthermore, the algorithm provides a pop-
ulation of good alternative solutions, which offers the decision maker 
a wide choice of practical solutions and an opportunity to consider 
other practical factors not included in the formulation. Therefore, the 
approach gives a robust method for system reliability optimization. 

A fuzzy based approach is especially essential, given that, at de-
sign stage, the desired design information is not precisely known, 
which makes the problem rather ill-structured. As such, reliance on 
human experience and expert information is unavoidable. FMGA 
uses fuzzy theory concepts to effectively model the vagueness and 
imprecision of the expert knowledge, taking into account the conflict-
ing multiple criteria. Computational results and comparative analysis 
showed that the proposed algorithm is more effective than best known 
algorithms in the literature.
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Table 4.	 Percentage improvement of FMGA solutions over best known results

Improve-
ment S1 S2 S3 S4 S5 Average

IR 0.0034 0.0027 0.0017 0.0029 0.0014 0.0024

IC 0.0003 0.0000 0.0764 0.0001 0.1046 0.0363

IW -0.6402 7.9698 9.3603 15.5321 0.1025 6.4649

IV 27.1739 17.3913 21.7391 34.7826 15.2174 23.2609
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