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1. Introduction

Resistance of building structures to the impacts of mining de-
pends on their technical condition, defined in terms of technical wear. 
In recent years, the results of the research studies [6, 7] confirmed 
the significant influence of mining exploitation on the technical wear 
of building structures, both in the form of ground deformations and 
mining tremors. They also demonstrated the importance of structural 
preventive measures and of current repairs. These relationships, how-
ever, remained implicit in the context of mathematical functional 
form. Therefore, the use of more complex analytical methods, taking 
into account the multidimensionality and non-linearity of the modeled 
process, was justified in the further studies. Such a model should allow 
for a more effective assessment of the technical condition of building 
structures and for the analysis of the influence of individual variables 
included in the description of the modeled phenomenon. Taking this 

into consideration, a model of the course of technical wear as the SVM 
(Support Vector Machine) network in the ε-SVR regression approach 
(Support Vector Regression) was used in the studies which were pre-
sented in the article.

The SVM method [8, 25], as well as its regression approach 
ε-SVR [4, 21], comprise a subgroup of the methods belonging to 
Machine Learning. The structure of these systems is very similar 
to Artificial Neural Networks (ANN) [17]. The choice of the SVM 
method to carry out the research studies presented in this paper was 
dictated the fact that:

in the  – ε-SVR method, it is not necessary to predetermine the 
mapping function, which allows to create a model for the mul-
tidimensional process in which the relationship between the 
variables are non-linear [6, 7] but without explicit strictly func-
tional form,
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W pracy przedstawiono wyniki analizy zużycia technicznego budynków zlokalizowanych w zasięgu wpływów eksploatacji górni-
czej na terenie Legnicko-Głogowskiego Okręgu Miedziowego (LGOM). W badaniach zastosowano pokrewną sieciom neurono-
wym metodę wektorów podpierających (Support Vector Machine) w podejściu regresyjnym ε-SVR (Support Vector Regression). 
Celem badań było uzyskanie oceny wpływu zmiennych opisujących zabezpieczenia konstrukcyjne i remonty na przebieg modelo-
wanego zjawiska. Podstawą do analiz był utworzony model zużycia technicznego budynków w postaci sieci ε-SVR. Oprócz zmien-
nych określających poziom zabezpieczeń konstrukcyjnych i remontów, w modelu uwzględniono zmienne opisujące: deformacje 
terenu pochodzenia górniczego, intensywność wstrząsów oraz wiek budynków. Dobór parametrów modelu przeprowadzono z 
wykorzystaniem, jako bezgradientowej metody optymalizacyjnej, algorytmu genetycznego. Bazując na utworzonym modelu ε-SVR 
przeprowadzono dwurodzajową analizę wrażliwości. Oceny wpływu zabezpieczeń konstrukcyjnych dokonano badając zmienność 
wektora gradientu modelowanej hiperpowierzchni. Natomiast analiza wpływu remontów na przebieg modelowanego procesu 
została przeprowadzona na bazie komparacji wyników symulacji modeluε-SVR. Wyniki badań potwierdziły przydatność przyjętej 
metodyki badań oraz pozwoliły na sformułowanie istotnych wniosków dotyczących wpływu analizowanych czynników na zużycie 
techniczne tradycyjnej zabudowy LGOM.

Słowa kluczowe: Support Vector Machine, wpływy górnicze, odporność budynków, zużycie techniczne, stan 
techniczny.
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in contrast to the artificial neural networks, the procedure of  –
building the ε-SVR network allows for the optimal, in the gener-
alizing sense, expansion of its structure, which takes place dur-
ing the calibration process of the parameters C, ε and γ. These 
parameters, described in Chapter 3 of this article, are contained 
in the raw formulation of the objective function for the ε-SVR 
method [21.25]
the final mathematical form of the  – ε-SVR network allows for a 
relatively simple determination of the values of the partial de-
rivatives, which form the basis for the sensitivity analysis of the 
model with respect to the specified continuous input variables.

The model of technical wear presented in this paper was created 
by the optimal choice of the parameters C, ε and γ using the LIBSVM 
package [6] and the genetic algorithm GA [19]. In order to identify 
the effect of the variable describing the level of structural preventive 
measures, (wZAB), the sensitivity analysis of the model was carried 
out, involving the study of the course of the gradient component for 
such a defined index. On the other hand, in order to determine the 
influence of the categorical variable wREM describing the extent of the 
repair works, the values of the model prediction obtained by means of 
its simulation were compared.

2. Description of the database of building structures

A group of 930 masonry residential buildings located within the 
impacts of the Mining Plant of KGHM “Polska Miedź” S.A., comprised 
the database for the analysis. The database of buildings was created 
as part of the examination of their technical condition. At the stage of 
detailed inspection, each building was cataloged using 93 variables. 
These variables describe the location of the structure, geometric data, 
type of development, the data on the structural components and fin-
ishing elements, the age of the buildings, technical wear determined 
by the method of weighted average [23], the scope of the repair works, 
the level of preventive measures against the impacts of mining and the 
current, at the time of the inspection, mining impacts in the form of 
deformation indices and characteristics of mining tremors.

This development has been subjected to mining impacts for more 
than 40 years. Initially, they resulted from the formation of the subsid-
ence trough over the mining excavations and a large trough associated 
with rock mass drainage [23]. In the mining area of LGOM, also min-
ing tremors have been occurring for 30 years [24].

The building structures located in LGOM, and erected after 1970, 
are protected against the effects of ground deformation caused by 
mining activities already during the construction stage. Older build-
ings are also regularly subjected to preventive measures (anchoring, 
reinforced concrete ties, etc.). Since the late 80’s of the twentieth cen-
tury, structural protection against paraseismic effects has also been 
introduced in newly constructed objects.

In order to assess the degree of wear of the studied buildings, the 
so-called method of weighted average was used [e.g. 23]. It involves 
an individual assessment of the degree of wear of individual ele-
ments, and then – by assigning appropriate weights to them – deter-
mining the weighted average degree of technical wear of the whole 
building structure.

To specify and describe quantitatively the indices affecting the 
technical condition of the development, two additional indices wREM 
and wZAB were defined.

Protection index wZAB was defined using the category of structure 
resistance (KO), which is the structural characteristics of the building, 
and the category of hazards to area from mining impacts (KT).

Mining area categories (KT) describe the intensity of continuous 
surface deformation, expressed by assigning the characteristic values 
of the slopes (T), curves (R), and horizontal deformation (ε) to the 
specific ranges of these indices (from 0 to V). On the other hand, the 
category of structure resistance (KO) is understood as the resistance 

of a building structure to the horizontal strains and curvatures of the 
land, adapted to the ranges of the values of these indices in the mining 
area categories (KT) – (from 0 to 4) [e.g. 9]. A building structure is 
considered to be resistant to the effects of mining when the category 
of its resistance KO is not smaller than the mining area category KT. 
In practice, it is assumed that the implementation of protective meas-
ures in a building structure aims at increasing the category of structure 
resistance (KO), at least to the level of the hazard category occurring 
in a given area (KT).

Depending on the scope of these protective measures, the total 
number of points (p) was established for each building structure ac-
cording to the empirical point method for assessing the resistance of 
building structures [9], in the range from p=0 (a building protected at 
the level of foundations and all floor structures) to p=15 (no protec-
tion). As a result, for each building structure, the value of the index 
wZAB was determined in accordance with the dependence (1):

 w
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ZAB =
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     (1)

where: KT – mining area category, for which additional protective 
measures were implemented,

 KO – category of structure resistance, predetermined during 
the design stage,

 p – number of points from the point method for evaluating the 
resistance of building 
structures for a given scope of protection.

On the other hand, the index wREM reflects the extent of repair 
works for each building. This is a categorical variable, described by 
the following values: 1 - for building structures with no repairs im-
plemented, and 2 - for building structures undergoing comprehensive 
repairs.

3. Research Methodology

This part of the study presents:
mathematical interlude in the scope of basic formulations of the  –
SVM method in regression approach,
method of calibration of the parameters  – C, ε and γ determining 
the final form of the SVM network structure, which was used 
in the study,
procedure of determining the gradient components in the sen- –
sitivity analysis.

3.1. Description of the SVM method in regression approach

In the regression approach in the SVM method, the sought ap-
proximating function is as follows [16]:

 y bTx w x( ) = ( ) +φ  (2)

where: nR∈x  – is the input variable vector in n-dimensional space,

 
φ ⋅( ) →: R Rn nh  – is a certain transformation transforming 
the raw input variables into the so-called feature space,

 
Tw  – is the vector of weights,

 b – free component (bias)

Mapping φ ⋅( ) →: R Rn nh
 
is implicit, and it is the result of the 

use of the kernel function of a specific type (e.g. [25]).



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.19, No. 1, 201756

sciENcE aNd tEchNology

The basis for the formulation of the problem of learning of the 
SVM system in regression approach is the definition of the error func-
tion, minimized in the adaptation process. With a certain set of refer-

ence data xk k k
Ny,{ } =1 , the loss function for a single reference is ex-

pressed as (eg. [25]):

 L y y
y y dla y y

dla y y
k k

k k k k

k k
ε

ε ε

ε
, x

x x

x
( )( ) =

− ( ) − − ( ) ≥
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This formula is called ε - insensitive loss function [10]. As a result 
of using the above function, imposing a certain tolerance margin ε, 
the regression approach using SVM is usually called ε-SVR (ε-Support 
Vector Regression (e.g. [21]).

The introduction of such an error function is typical of the so-
called robust methods resistant to interference in the data, or the out-
liers [14]. It also allows for the subsequent formulation of the problem 
of learning as the task of quadratic programming [2], which is one of 
the main advantages of the ε-SVR method.

With a predetermined error function, for a single reference (3), 
the objective function is written, the minimization of which will be 
followed by the learning process:

 min , , , ...
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With inequality constraints:

 y bk
T

k− ( ) − ≤ +w xφ ε ξ  (5)

 w xT
k kb yφ ε ξ( ) + − ≤ +  (6)

 ξ ξk k, * ≥ 0  (7)

The above record is the so-called original minimization problem 
with inequality constraints (5), (6) and (7) (e.g. [2]). The problem pre-
sented in this way compromises between the generalization and the 
quality of fitting the approximator expressed as (2).

The component ξ ξk k
k

N
* +( )

=
∑

1
 in the equation (4), together with 

the constraints (5), (6) and (7) is responsible for the minimization of 
the global error function for all the learning references:
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N
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The values *,k kξ ξ  are the deviations of mapping each reference 
beyond the predetermined error tolerance ε. The learning process at-
tempts to minimize them while complying with all the constraints of 
the function (5), (6) and (7). On the other hand, the component  
1
2

w wT  is responsible for the so-called maximizing the margin of 

separation [16]. In the regression approach, implemented in the fea-
ture space, minimization of that component leads to the optimal deter-
mination of the approximator hyperplane within the predetermined 
error tolerance ε.

All in all, both components of the equation (4) are opposing, and 
a compromise is determined by introducing a regularization constant 
C. The higher the value, the better fitting of the system, and the lower 
the generalization properties, and vice versa.

To solve the so defined problem of minimization, Lagrange func-
tions are created  (e.g. [2, 14]). Thus, the dependence (4) is obtained, 
extended by the set of all constraints (5), (6) and (7) controlled by 
Lagrange multipliers:
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Then, using Fermat’s theorem and Karush-Kuhn-Tucker condi-
tions [25], dual formulation of the quadratic programming is ob-
tained, expressed in the field of Lagrange multipliers in the follow-
ing form [14]:

max ,
,
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With inequality constraints:

 0 ≤ ≤αk C*  (11)

 0 ≤ ≤αk C  (12)

 α αk k
k

N
−( ) ≥

=
∑ * 0

1
 (13)

This formulation is subject to further maximization using La-
grange multipliers.

The factor  K k jx x,( )  appearing in the equation (10) is the kernel 
of the system, which is given explicitly, and is the result of the equa-

tion of the implicit functions φ ⋅( )  [14]:

 K k j k jx x x x,( ) = ( ) ( )φ φ  (14)

The form of the kernel is selected arbitrarily from all the functions 
meeting the assumptions of Mercer’s Theorem [14].

As a result of such a learning procedure, having determined the 
values of Lagrange multipliers, the weight vector is determined from 
the relationship:

 w x= −( ) ( )
=
∑ α α φk k
k

N

k
SV *

1
 (15)

Which, in turn, allows to write the final form of the approximator:

 y K bk k
k
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3.2. Calibration of the parameters C, ε and γ 

An attempt to determine the sought parameters, hereinafter re-
ferred to as hyperparameters, was made in the paper [19], in which 
additionally, based on the concept of Meta-SVM [10], FPE (Final 
Prediction Error) was used [19]. In the course of further research, 
however, the author decided to use a more efficient method based on 
the concept described in [4]. The main stage in this method is the n-
fold cross-validation carried out on preliminary sets: training set and 
testing set. For each iteration of the validation, a certain range of the 
discussed parameters C, ε and γ is examined, which are expressed in 
the logarithmic scale. Then, according to the proposed optimization 
algorithm GS (Grid Search, e.g. [4]), the minimization of the objective 
function is carried out, which was adopted as MSE (Mean Squared Er-
ror), averaged from all n testing sets used in the validation. As a result, 
an optimal set of the sought hyperparameters C, ε and γ is obtained. 
The GS algorithm is a gradientless global minimization method (e.g. 
[2]). It has one drawback, though. There is a necessity to define ranges 
for the searched area and a specific starting point. Therefore, instead 
of the GS algorithm, the optimization method was used, based on the 
Genetic Algorithm (GA). The applied GA method is also a gradientless 
algorithm, allowing to identify the global minimum, e.g. [2, 15].

3.3. Sensitivity analysis - study of the course of gradient 
components

The created SVM model, as in the case of artificial neural net-
works (ANN) is the so-called “Black box” and is primarily used to 
estimate the input variables. In recent years, more and more attempts 
have been made to analyze the internal structure of such models [26]. 
These activities aim to clarify the information about the interactions 
between the input variables and the output variable. The primary, 
and at the same time the simplest procedure, allowing to determine 
the quantitative influence of each of the dependent variables on the 
explanation of the raw variability contained in the output variables, 
is the so-called variable elimination. Basing on such a procedure, it 
is possible to make the selection of the most important variables in 
the model, the so-called feature Selection [3, 13]. Another approach, 
although rarely undertaken, is the analysis of the course of the gradi-
ent components relative to each of the input variables included in the 
model. Such an approach, used in the research studies presented in 
the paper, allows for the qualitative and quantitative 
assessment of the influence of each variable on the 
monotonicity of the estimated process [5].

This method was used here to study the influ-
ence of continuous variable such as the wZAB index. 
In order to carry out the analysis, the analogy of the 
structure of the ε-SVR model to the Radial Basis 
Function Neural Networks was used ([16]). Thus, 
the sensitivity analysis was performed in accord-
ance with the procedures proposed in [5, 18, 22]. 
Considering the fact that the record of the ε-SVR 
approximator can be expressed in the form of a de-
terministic function in accordance with the equation 
(16), for any component of the vector of input vari-
ables i at a given point xp , it is possible to determine 
the gradient component in the following form:
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In the equation (17),  the component ( ),k jK x x  is the kernel of 
the system, and in the selection of radial basis functions, it takes the 
form:
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4. Test results

4.1. The model approximating the course of technical wear 
of building structures

The basis for the inference on the influence of the indices wREM 
and wZAB was the created predictive model in the form of the ε-SVR 
network structure. The general characteristics of the model were il-
lustrated in Table 1 and Fig. 1. The average of the absolute values 
of the error between the model mapping and the actual variables Ver, 
and the so-called Success Ratio SR [%] as a function of the relative 
error ep [%], were used as measures specifying the assessment of the 
quality of the resulting model [11]. These results were presented in 
Tables 2, 3 and 4.

In addition to the examined indices, the set of the input variables 
included as well: the variable describing the age of the building, the 
index reflecting the impact of continuous deformation in the mining 
area ε (+), and the mining tremors intensity index asg [e.g. 24]. A de-
tailed analysis confirming the necessity to include these variables in 
the model have been discussed in detail in [6, 7, 23].

All the analyses were performed in the Matlab environment using 
LIBSVM package [4] and Genetic Algorithm Toolbox [15].

Basing on the analysis of the results contained in Table 1, it is pos-
sible to conclude that the developed model is characterized by a high 
level of both fitting and generalization of the acquired knowledge, as 
evidenced by error values for training and testing sets, respectively. 
The confirmation of generalization features is also the number which 
has emerged, of 200 support vectors representing 33% of all refer-
ences used for learning from the training set. An additional informa-
tion on the “smoothness” of the resulting approximator is a relatively 
large width of the basis function γ = 0.82, which for the standardized 
variables N(0.1) allows to continuously cover the ranges of all the 
analyzed variables.

Analysis of the value of the Ver error (cf. Tab. 2) allows to evalu-
ate the model for fitting and generalization. Values of the Ver error, 
expressed in units of the degree of technical wear, both for the training 
and testing sets, oscillate around ± 6%. This is a good result in terms 
of fitting the model prediction to the reference data. Moreover, the 
values of the Ver error for the training and testing sets are very similar, 
which confirms good generalization properties.

Similar conclusions are drawn from the analysis of the distribu-
tion of the Success Ratio measure with respect to the relative error ep. 
In Table 3, for the accepted limit of the relative error ep of 30%, the 

Table 1. Basic parameters summarizing the ε-SVR model

Training set
 MSE

Testing set 
MSE

Number of sup-
port vectors

nSV

Regularization 
parameter

C

Width of radial 
basis functions

γ

Tolerance 
margin ε

0,0026 0,0027 200 0,790 0,820 0,036

Table 2. Values of the Ver error for the training set and the testing set, expressed in units of techni-
cal wear sz [%]

Training set Testing set

6,05 [%] 6,28 [%]
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accuracy of prediction, expressed by the SR measure, is 83.4% for the 
training set and 86.3% for the testing set, respectively. The level of 
accuracy proves good fitting of the model to the reference data. On the 
other hand, the approximate value of the course of the SR measure (cf. 
Tab. 4) for the training and testing sets demonstrates that the general-
izing properties of the model are retained.

The comparison of the approximated values relative to the source 
data (Fig. 1) demonstrates that the correlation coefficient between 
them is close to 1.

4.2. Studying the effect of the protection index wZAB on the 
technical wear of building structures

In this paper, according to the description of the adopted method-
ology contained in Section 3.3, the problem of analyzing the influence 
of the protection index wZAB was solved by the simulation of the model 
for uniformly distributed grid of points in the space of input variables. 
The scale of each of the standardized variables was divided into 20 
equal parts. Given that the repair index wREM adopted only two cate-
gorical values, simulation space equal to 388,962 points was obtained. 
At each point, according to the dependence (17), the values of the par-
tial derivatives with respect to each continuous variable contained in 

the model was determined. 
The obtained values of the 
derivatives, calculated rela-
tive to the protection index 
wZAB were illustrated in Fig. 
2 and 3. In Fig. 2, the value 
of the derivative calculated 
relative to the variable wZAB 
demonstrates that the mod-
eled value of the technical 
wear of buildings increases 
in wZAB = 0 ÷ 0.64. Beyond 
this range, the degree of 
technical wear gradually 
starts to decrease.

On the other hand, 
Fig. 3 illustrates the course 
of the derivative calculated 
relative to the protection in-
dex wZAB in the domain of 

Table 3. Summary of the SR values [%] in the domain of the relative error ep [%] for the training and testing sets

Training set Testing set

ep [%] SR [%]- cumulated for ep<epi ep [%] SR [%]- cumulated for ep<epi

0,0 10,2 0 14,4

5,0 34,0 5 40,4

10,0 52,6 10 51,4

15,0 65,0 15 68,5

20,0 74,8 20 76,7

25,0 80,2 25 82,2

30,0 83,4 30 86,3

35,0 87,3 35 93,2

40,0 89,5 40 95,2

45,0 91,7 45 95,2

50,0 92,6 50 96,6

55,0 93,7 55 97,3

60,0 95,3 60 97,3

65,0 95,4 65 97,3

70,0 95,8 70 97,9

75,0 95,9 75 97,9

80,0 96,4 80 97,9

85,0 96,6 85 97,9

90,0 97,0 90 98,6

95,0 97,5 95 99,3

100,0 100,0 100 100,0

Table 4. The graphs of the SR course [%] in the domain of the relative error ep [%] for the training and testing sets

The graph of the SR course [%] as a function of the rela-
tive error ep [%] for the training set

The graph of the SR course [%] as a function of the rela-
tive error ep [%] for the testing set
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the variable describing the age of building structures. Apparently, 
the significance of the influence of protection increases with the age 
of buildings, causing a decrease in the modeled value of the degree 
of wear.

The analysis of the results leads to the following conclusions:

noticeable reduction in the approximated values of the techni- –
cal wear of buildings takes place at the time when the scope of 
the applied protective measures raises the category of structure 
resistance (KO) above the given mining area category (KT) by 
the relative value wZAB = 0.64 (cf. Fig. 2).
the influence of protective measures on reducing the approxi- –
mated value of technical wear becomes clearer with time, that 
is, with an increase in its natural wear (cf. Fig. 3).

4.3. Studying the effect of the repair index wREM

The repair index wREM used in this study is a categorical variable. 
To evaluate the influence of this index, the developed model was sub-
jected to a simulation using two sets of variables. One included non-
renovated building structures, the second one – renovated ones. The 
remaining values of the variables in both cases were the same, which 
allowed for a comparison of the course of the technical wear and for 
drawing conclusions. The measure of the influence was adopted as the 
value of the difference between the obtained prediction for the first set 
of variables (non-renovated building structures) and the prediction for 
the second set. The results of the differences were summarized in the 
domain of the variable describing the age of the buildings, and they 
were illustrated in Fig. 4.

The analysis of the results presented in Fig. 4 shows that repair 
works clearly contribute to the decrease in the approximated value of 
the degree of technical wear. It is also noticeable that this influence is 
associated with the age of the building. The change in the values of 
the differences between the prediction of the model for non-renovated 
and renovated building structures reaches up to 8% for the buildings 
aged more than 90 years (cf. Fig. 4).

5. Summary and conclusions

The results of the conducted research studies presented in this pa-
per allow to draw conclusions both regarding the applicability of the 
SVM method for modeling technical wear of building structures, as 
well as the influence of different variables on the course of the mod-
eled phenomenon.

In the case of the applicability of the SVM method, it was found 
that it allows to develop a model implementing nonlinear mapping of 
the multidimensional domain of input variables to the approximated 
value of technical wear. This model maintains the required level of 
accuracy and generalization. In addition, despite the lack of raw ap-
proximating function, the mathematical form, which is representative 

Fig. 1. Spread of the model prediction values relative to the reference data – 
the training set (red), the testing set (blue)

Fig. 2. Distribution of the gradient component for the variable wZAB

Fig. 3. Distribution of the gradient component of the model for the variable 
wZAB, illustrated relative to the variable describing the age of build-
ing structures

Fig. 4. Approximated values of the technical wear determined for a set of 
reference variables, separately for the renovated (yellow) and non-
renovated (blue) building structures
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for the model, allows to carry out the sensitivity analysis with respect 
to continuous variables.

As a result of the analysis of the influence of structural protective 
measures on the technical wear of the study group of building struc-
tures, the limit of significant influence of protective measures was 
established equal to wZAB = 0.64. The obtained value, according to 
the equation (1), demonstrates that the protection level becomes sig-
nificant when, having applied the protective measures, the resistance 
category of a given building structure reaches the value of KO higher 
than the value of KT by 0.64. Generally speaking, it can be stated that 
protective measures contribute to the improvement of the technical 
condition of a building structure when they result in the resistance 
category KO exceeding hazard to mining area category KT by at least 
1 category. This information can be very useful in evaluating the so-
called mining damage.

The use of the SVM model simulation also showed the influence 
level of the repair index wREM on the technical wear of the study 
group of buildings. The repair works, depending on the age of the 
buildings, have resulted in an improved technical condition ranging 
from 0 to 8%.

The analysis of the subject literature demonstrates that the SVM 
method may also be used in the case of approximating the response 
surface of a structure in the reliability analysis [1]. Therefore, it is 
planned to use this methodology for the risk assessment of building 
structures in mining areas subject to the reliability theory.

The article was prepared as part of the AGH statutory research No. 
11.11.150.005.
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