Piotr CZECH
Wykorzystanie dyskretnej transformaty falkowej i probabilistycznych sieci neuronowych w diagnostyce silników spalinowych
W artykule przedstawiono próbę oceny stanu pracy silnika w warunkach symulowanego braku dopływu paliwa do poszczególnych cylindrów oraz próbę wykrywania uszkodzeń zaworów silnika spalinowego za pomocą sygnału drgań rejestrowanego na kadłubie silnika. Obiektem badań był czterocylindrowy silnik spalinowy. W badaniach za źródło informacji o stanie silnika przyjęto sygnały przyspieszeń drgań rejestrowane na kadłubie silnika ZI. W przypadku diagnozowania silnika spalinowego metodami drganiowymi nie można zapominać o występowaniu wielu źródeł drgań, co jest przyczyną wzajemnego zakłócania symptomów uszkodzeń. Ze względu na konieczność analizy sygnałów niestacjonarnych i impulsowych w niniejszej pracy wykorzystano dyskretną transformatę falkową (DWT). Z przeprowadzonych badań wynika, że istnieje możliwość wykorzystania probabilistycznych sztucznych sieci neuronowych do oceny procesu dopływu paliwa do cylindrów oraz stanu zaworów w silnikach spalinowych.
Discrete wavelet transform and probabilistic neural network in ic engine fault diagnosis
The article presents an attempt of evaluating the state of engine operation under simulated shortage of fuel in? ow to individual cylinders and the attempt to detect the valve faults in the engine by using the vibroacoustic signal registered on the engine block. The object of research was a four-cylinder combustion engine. The vibration acceleration signals registered on the engine block ZI were assumed the source of information on the engine condition. In case of diagnosing combustion engines by vibration methods, the presence of numerous sources of vibration cannot be neglected, which are the reason for reciprocal interference of symptoms of fault. Owing to the necessity of analyzing non-stationary and impulse signals, a discrete wavelet transform (DWT) has been applied in this study. As results from the research, there is a possibility of using probabilistic artificial neural networks to assess the process of fuel inflow to cylinders and the condition of the valves in the combustion engines.
Wykrywanie wczesnych faz uszkodzeń kół zębatych w warunkach eksploatacyjnych
Przekładnie zębate są powszechnie wykorzystywane w układach napędowych maszyn i urządzeń. W trakcie ich eksploatacji bardzo istotne jest odpowiednio wczesne pozyskanie informacji o postępujących procesach degradacyjnych. Pozwala to na zaplanowanie we właściwym czasie niezbędnych przeglądów oraz napraw, zwiększając w ten sposób niezawodność wszystkich elementów łańcucha kinematycznego. Z tego powodu w artykule zawarto wyniki prac zespołu w zakresie diagnostyki wibroakustycznej uszkodzeń elementów przekładni zębatych. Przedstawiono przegląd badań symulacyjnych i doświadczalnych, których celem było opracowanie metod pozwalających na wczesną identyfikację uszkodzeń zębów w postaci pittingu powierzchni roboczych, wykruszenia wierzchołka, pęknięcia u podstawy zęba oraz częściowego wyłamania zęba. Dokonano oceny efektywności wybranych metod przetwarzania sygnałów wibroakustycznych w procesie wykrywania uszkodzeń kół zębatych przy jednoczesnym występowaniu uszkodzeń łożyskowania przekładni pracujących w różnych warunkach. Wstępnie przetworzone sygnały drganiowe analizowane w dziedzinie czasu i częstotliwości stanowiły podstawę do opracowania miar diagnostycznych wrażliwych na wczesne stadia uszkodzeń. Miary otrzymane w wyniku symulacji oraz badań doświadczalnych wykorzystano do budowy zestawu wzorców klasyfikatora neuronowego diagnozującego rodzaj i stopień uszkodzenia kół przekładni z błędem walidacji poniżej 5%. Uzyskana zgodność jakościowa i ilościowa wyników badań symulacyjnych i doświadczalnych wykazała, że wykorzystanie rozbudowanego i zidentyfikowanego modelu dynamicznego przekładni w układzie napędowym, umożliwia pozyskanie wiarygodnych relacji diagnostycznych
Early fault detection of toothed gear in exploitation conditions
Toothed gears are commonly used in various power transmission systems. Collecting information about degradation processes early enough is crucial during their exploitation. It enables suitable planning of required inspections and repairs, improving the reliability of all kinetic chain elements. The article includes results of the team’s research work on vibroacoustic diagnostic of gearbox components’ faults. A review of simulation and experimental researches that aimed at elaboration of methods which would enable early identification of teeth faults in the form of working surface pitting, spalling of tooth crest, crack at the tooth bottom as well as partial breaking of a tooth, is presented. Assessment of selected methods of processing the vibroacoustic signals during the detection of gear faults has been carried out while faults occur in gear bearings working under various conditions. The initially processed vibration signals analyzed within time and frequency domains constituted a basis for preparation of detection measures that were sensitive to early stages of damage. The measures obtained as a result of simulation and experimental tests were used to construct a set of neuron classifier models to diagnose the type and degree of toothed wheels faults with a validation error below 5%. The achieved qualitative and quantitative conformity of simulation and experimental research results has shown that application of an expanded and identified dynamic model of the gear in a power transmission system enables the acquisition of reliable diagnostic relations.
Wykorzystanie histogramów widma i cepstrum drgań korpusu silnika do budowy wzorców luzu w układzie tłok-cylinder dla klasyfikatora neuronowego RBF
W artykule przedstawiono próbę oceny zużycia złożenia tłok-cylinder za pomocą sygnału drgań rejestrowanego na kadłubie silnika ZI. Obiektem badań był czterocylindrowy silnik spalinowy o pojemności 1,1 dm3. Diagnozowanie silnika spalinowego metodami drganiowymi jest szczególnie utrudniona ze względu na występowanie wielu źródeł drgań, co jest przyczyną wzajemnego zakłócania symptomów uszkodzeń. Diagnozowanie uszkodzeń silników metodami wibroakustycznymi jest trudne także ze względu na konieczność analizy sygnałów niestacjonarnych i impulsowych. W procesie diagnozowania stosuje się różne sposoby selekcji sygnału użytecznego. Zmiany stanu technicznego silnika wywołane wczesnymi fazami jego zużycia są trudne do wykrycia ze względu na maskowania usterek mechanicznych przez adaptacyjne układy sterowania silnika. Z przeprowadzonych badań wynika, że istnieje możliwość wykorzystania sztucznych sieci neuronowych do oceny luzu w układzie tłok-cylinder.
Application of cepstrum and spectrum histograms of vibration engine body for setting up the clearance model of the piston-cylinder assembly for RBF neural classifier
The paper presents an attempt to evaluate the wear of piston-cylinder assembly with the aid of vibration signal recorded on spark ignition (SI) engine body. The subject of the study was a four-cylinder combustion engine 1.1 dm3. Diagnosing combustion engines with vibration methods is specifically difficult due to the presence of multiple sources of vibration interfering with the symptoms of damages. Diagnosing engines with vibro-accoustic methods is difficult also due to the necessity to analyse non-stationary and transient signals. Various methods for selection of usable signal are utilised in the diagnosing process. Changes of the engine technical condition resulting from early stages of wear are difficult to detect for the effect of mechanical defect masking by adaptive engine control systems. According to the studies carried out, it is possible to utilise artificial neural networks for the evaluation of the clearance in piston-cylinder assembly.