Sharareh Taghipour
Optymalizacja nie-okresowych przeglądów i konserwacji systemów wieloelementowych
Przeglądów systemu typu k z n: G oraz systemu z elementami ulegającymi miękkim i twardym uszkodzeniom dokonuje się nieokresowo. W przypadku systemu k z n, składowe ulegają uszkodzeniom „w trybie cichym” (tj. uszkodzenia są ukryte), a cały system ulega awarii, gdy ulegnie uszkodzeniu element (n-k + 1). W przypadku systemu z elementami typu twardego i miękkiego, uszkodzenia twarde prowadzą do awarii systemu, natomiast uszkodzenia miękkie są ukryte i nie powodują natychmiastowej awarii systemu, choć nadal zmniejszają jego niezawodność. Każda awaria systemu stanowi dodatkową, w stosunku do przeglądów planowych, okazję do przeprowadzenia przeglądu (tzw. przegląd awaryjny) ukrytych elementów miękkich. Dostępne rodzaje konserwacji to wymiana oraz naprawa minimalna. W przypadku komponentów twardych, decyzję, który typ konserwacji zastosować, podejmuje się biorąc pod uwagę optymalny wiek przed wymianą. W przypadku elementów miękkich z ukrytymi uszkodzeniami, wiek optymalny jest nieznany, dlatego decyzje o odpowiednim typie konserwacji podejmuje się z uwzględnieniem optymalnej liczby minimalnych napraw przed wymianą. Ukryty charakter uszkodzeń elementów składowych typu miękkiego wyklucza wykorzystanie rozwiązywalnego wyrażenia analitycznego, dlatego w pracy użyto symulacji i algorytmu genetycznego (GA), w celu jednoczesnej optymalizacji nieokresowych strategii prowadzenia konserwacji i przeglądów oraz zapewnienia, że będą one pociągały za sobą minimalny oczekiwany koszt całkowity w skończonym horyzoncie planowania. W świetle rosnącej złożoności obliczeniowej związanej z dużą liczbą ocenianych przeglądów i strategii utrzymania ruchu, algorytm genetyczny stanowi obiecującą metodę optymalizacji złożonych systemów wieloelementowych o wielu parametrach decyzyjnych.
Optimisation of Non-Periodic Inspection and Maintenance for Multicomponent Systems
A k-out-of-n:G system and a system with components subject to soft and hard failures are both inspected non-periodically. For the k-out-of-n system, components fail “silently” (i.e. are hidden), and the entire system fails when (n-k+1)st component fails. For the system with hard-type and soft-type components, hard failures cause system failure, while soft failures are hidden and do not cause immediate failure of the system, but still reduce its reliability. Every system failure allows for an opportunistic inspection of hidden soft-type components in addition to the scheduled inspections. The available maintenance types are replacement and minimal repair. For hard-type components, the maintenance decision is determined by the optimal age before replacement. For the soft-type components with hidden failures, we do not know their age, and so decide on the appropriate type of maintenance using the optimal number of minimal repairs before replacement. The hidden nature of soft-type component failures precludes the use of a tractable analytic expression, so we use simulation and genetic algorithm (GA) to jointly optimise the non-periodic policies on maintenance and inspection and to ensure these incur minimal expected total cost over a finite planning horizon. Due to increasing computational complexity associated with the number of inspections and maintenance policies to be evaluated, the genetic algorithm presents a promising method of optimisation for complex multicomponent systems with multiple decision parameters.
Algorytm do oceny wpływu konserwacji na zagregowane zmienne towarzyszącei jego zastosowanie w odniesieniu do kolejowych napędów zwrotnicowych
W artykule zaproponowano algorytm służący do szacowania skuteczności utrzymania ruchu w odniesieniu do wieku i stanu technicznego (kondycji) systemu. Główny wkład proponowanej metody stanowi koncepcja wirtualnego stanu urządzenia. Metoda zakłada, że uszkodzenia można zamodelować za pomocą niejednorodnego procesu Poissona, a zmienne towarzyszące za pomocą modelu proporcjonalnego hazardu. Mówiąc precyzyjniej, wpływ konserwacji na wiek urządzenia szacuje się z wykorzystaniem funkcji hazardu Weibulla, natomiast wpływ na stan urządzenia i zmienne towarzyszące związane z monitorowaniem stanu ocenia się stosując funkcję hazardu Coxa. W artykule pokazujemy, że wpływ konserwacji na wskaźnik stanu i wskaźnik stanu wirtualnego można wyrazić w kategoriach filtra Kalmana. Wskaźnik stanu oblicza się na podstawie odległości Mahalanobisa między bieżącymi a początkowymi danymi z monitorowania stanu. Ocenia się także wpływ utrzymania na wiek i kondycję systemu. Proponowany algorytm zastosowano w odniesieniu do napędów zwrotnicowych. Zapobiegawcze i naprawcze typy konserwacji zamodelowano jako różne parametry utrzymania ruchu. Korzystając z danych z monitorowania stanu, obliczono wskaźnik stanu jako skalowaną odległość Mahalanobisa. Wyprowadzono funkcje niezawodności i wiarygodności oraz obliczono metodą najmniejszych kwadratów szacunkowe wielkości wszystkich istotnych parametrów, a także szacunkowy wpływ konserwacji na wskaźniki czasu i stanu technicznego oraz pozostały okres użytkowania (RUL).
An algorithm for estimating the effect of maintenance on aggregated covariates with application to railway switch point machines
We propose an algorithm for estimating the effectiveness of maintenance on both age and health of a system. One of the main contributions is the concept of virtual health of the device. It is assumed that failures follow a nonhomogeneous Poisson process (NHPP) and covariates follow the proportional hazards model (PHM). In particular, the effect of maintenance on device’s age is estimated using the Weibull hazard function, while the effect on device’s health and covariates associated with condition-based monitoring (CBM) is estimated using the Cox hazard function. We show that the maintenance effect on the health indicator (HI) and the virtual HI can be expressed in terms of the Kalman filter concepts. The HI is calculated from Mahalanobis distance between the current and the baseline condition monitoring data. The effect of maintenance on both age and health is also estimated. The algorithm is applied to the case of railway point machines. Preventive and corrective types of maintenance are modelled as different maintenance effect parameters. Using condition monitoring data, the HI is calculated as a scaled Mahalanobis distance. We derive reliability and likelihood functions and find the least squares estimates (LSE) of all relevant parameters, maintenance effect estimates on time and HI, as well as the remaining useful life (RUL).